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Preface

In recent years free-standing and geometric (spiral, helical, elliptical and
combinations) staircases have become quite popular. Many variations of
these staircases exist. A number of researchers have come forward with
different concepts in the fields of analytical, numerical, design and of
experimental assessments. The aim of this book is to cover all these
methods and to present them with greater simplicity to a practising engi-
neer. The numerous examples which are given in the text will obviously
make that task easier. The book is divided into five chapters. Chapter 1
deals with the general requirements for analysing, designing and struc-
tural detailing of staircases in various materials. This chapter will assist
with the analysis and design of staircases given in Chapters 2 and 3.
Chapter 2 is devoted to all available classical methods including those
developed by Taleb, Gould, Liebenberg, Siev, Morgan and Cohen. Ex-
amples of staircases using these methods are included. This is followed
by Chapter 3, which is devoted to staircases analysed by the flexibility,
the stiffness and the finite element methods. A comprehensive treatment
of staircases is given, analysed by plate/shell membrane technique. All
methods mentioned in Chapter 3 are fully described and reasonably sup-
ported by numerical examples. Analyses stated in Chapters 2 and 3 are
relevant to all materials. Chapter 4 is earmarked for a comparative study
of some of the methods described earlier. Charts and graphs are given for
the reader to examine for himself or herself the capabilities of all these
methods and their relevant applications. Numerous design examples are
given on free-standing and geometric staircases and their elements and
components. The design examples are related to the case studies given
in earlier chapters, which are based on existing staircases.

Bibliographical references have been given in the text for those who
wish to carry out in-depth studies in one or all areas of research. The
book is supported by two appendices for additional analyses and exam-
ples of staircases from the practices of different countries.

Appendices will particularly be of interest to those practising engi-
neers who wish to make a comparative study of practices and code
requirement of various countries.
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Preface

The book will serve as a useful text for teachers preparing design
syllabuses for undergraduate and post graduate courses. Each major sec-
tion has been fully explained to permit the book to be used by practising
engineers and students, particularly those facing the formidable task of
having to design/detail complicated staircases with unusual boundary
conditions for specific contracts and research assignments. Contractors
will also find this book useful in the preparation of construction draw-
ings.

M.Y.H. Bangash
T. Bangash
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X1

Definitions

Baluster:
Clearance:

Depth of tread:
Elliptical stair:
Going:

Helical stair:
Landing:

Half landing:

Scrolls:

Strings/stringers:
Tread (parallel):

An infilling member of a balustrade.

The unobstructed height measured at right angles
to the pitch line.

The horizontal distance to the face of the riser.

A flight described on plan as an ellipse.

A horizontal part of a step.

A stair rising to describe a helix and in all the
treads are tapered on a plan. (Commonly known
as spiral or circular stair.)

A horizontal platform of the flight at the end or
between flights.

A landing at which a half turn is made between
two flights of stairs.

The end of a handrail sculptured to resemble a
roll of parchment.

Beams which support the stair flights.

A step at which the nosing is parallel.






XIII

Major notations

constant;

width of stairway;

width of the supporting beam;

stair thickness;

effective depth;

Young’s modulus;

concrete strength, cylindrical and cubic, respectively;
shear modulus;

going;

horizontal redundant force;

second moment of area;

polar moment of inertia; Jacobian;

spring constants;

spans plane projection etc.;

M,, M = bending moments in specific location;

T twisting moment;

Mg, M = lateral moment (about axis normal to the stair and
vertical moment about the horizontal axis), respec-
tively;

axis force;

radius of centre line of load;

ri, Ry = radius of centre line of steps;

Vies Var = radial horizontal shear force and shear force across
the section of stairs, respectively;

torsional moment;

limiting value for maximum torsional moment;
horizontal component of membrane force load;
membrane force;

load on the flight;

strain energy;

total design ultimate load,;

uniform load;

shorter and longer overall dimensions of rectangular
cross section, respectively;
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XIV  Major notations

M =

coordinates;

total arc subtended by helix or angle of inclination;
particular value of theta at which torsional moment
is maximum or particular value of theta at which the
vertical moment is equal to zero (inflexion point);
parameters;

angle subtended in plan measured from midpoint of
stair;

slope made by tangent to helix centre line with re-
spect to the horizontal plane;

parameter;

strain;

stress, shear stress;

radius (specific).
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Comparison of notations

Text

B
Ly, L,
L

G

hy

D, D;
wd’ wL
w, 5, A
M, T

For other symbols refer to individual chapters.

European

00 ™\ M o
@

s
<9

American






XVII

Conversion factors (units)

Imperial or MKS ST units

units

1 inch = 25.4 mm;

1 foot = 0.3048 m;

1 ft/s = 0.3048 m/s;

1 ft? = 0.0929 m?;

1 in? = 645.2 mm?;
1ft3 = 0.02832 m?;

1 rad = 57.296 deg;

11b = 0.454 kg;

1 ton (short) = 20001b = 0.9072 Megagram (Mg);
1 ton = 9.964 kN;

1 Ibf = 4448 N;

1 kip = 4.448 kN;

1 kip/ft = 14.594 kN/m;

1 kip/in = 175.1268 kN/m;
1 kgf = 9.806 N;

F° (Fahrenheit) to °C; . = (¢t —32)/1.8 or t. = 5/9 Kelvin;
°C (Celsius) to F°; ty= 1.8t +32;

1 Ib/ft3 = 16.018 kg/m>;

1 cu ft = 164 cm3;

1 cuyd = 0.765 m>;

1 Ib/in? = 6.89 kPa (kN/m?);
1 Ib/ft? = 47.880 Pa (N/m?);
1 1bf/ft = 14.59 N/m;

1 kip/in® = 6.895 MPa (MN/m?).






CHAPTER 1

Specifications and basic data
on staircases

1.1 INTRODUCTION TO STAIRCASES

A stair is constructed with steps rising without a break from floor to
floor, or with steps rising to a landing between floors, with a series of
steps rising further from the landing to the floor above. There are three
basic ways in which stairs are planned:

A straight flight stair (Fig. 1.1), which rises from floor to floor in one
direction with or without landing.

A quarter turn stair (Fig. 1.2), which rises to a landing between floors,
turns through 90°, then to the floor above.

A half turn stair (Fig. 1.3), which rises to a landing between floors,
turns through 180°, then rises, parallel to the lower flight, to the floor
above. This type of stair is sometimes called ‘dog-leg’ or ‘scissor-type
stair’.

Geometric stairways. The stairs mentioned above are generally free-
standing ones. In addition to these, stairs known as geometrical stairs
can be designed into spiral, helical, circular, elliptical (Fig. 1.4) and
other shapes. They can all be in concrete, steel, timber or combination.
The stairs are sometimes described as open well stairs where a space or
well exists between flights (Fig. 1.2(c)).

Again in free-standing stairs the main types are:

— Type 1: Those supported transversely or across the flight. Stringer
beams are needed (Fig. 1.1) on one or both sides.

— Type 2: Those spanning longitudinally along the flight of steps
(Fig. 1.2) either on walls or on landing beams or on wall beams.

— Type 3: Cantilever type projecting from walls or wall beams
(Fig. 1.5) with each step acting as a cantilever.

— Type 4: Combination of Type 2 and Type 3. Every 4th or Sth step
is cantilevered with sloped soffit with a slab continuous between two
steps.

The structural details of some of the stairs are given in Appendix 2.
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Figure 1.2. Quarter turn c) Open-well stair, quarter-turn
stairs. type with a horizontal space.

1.2 STAIRWAY LAYOUTS

Stairway layouts depend on several factors including building type and
its layout, choices, material etc. Comfortable stairways should be de-
signed in relation to the dimensions of the human figure. A summary
of the American practice for staircases is given in Tables 1.1 and 1.2.
The British Standard on stairs BS5395 (1977) defines some of these di-
mensions in Figure 1.6. The British and the European practices use the
following criteria for width, length and headroom etc.:

a) Flats — two storey to four storey wr = 900 mm; more than four
storey wr = 1000 mm.

b) Public buildings using each floor — under 200 persons wr = 1 m;
200 to 400 persons wr = 1.5 m; in excess of 400 persons 150 mm
to wr > 3 m. Where the width is 1.8 m or over, the width should be
divided by a handrail.

¢) The length and rise a minimum of 3 steps and a maximum of
16 steps. There must not be more than 36 rises in consecutive flights
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Figure 1.3. Half turn stairs.
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Plate 1.4. Scissor type
stairs.

without a change in the direction of travel of 30° or more. The total rise
must not exceed 6 m.

1.2.1 Landings, landing beams and flights

A quarter space landing in wood is generally supported by a newel
post carried down to the floor below. In small houses quarter or half
turn stairs are sometimes constructed with winders (Fig. 1.2(b)) instead
of quarter or half space landings. Winders are triangular shaped steps
constructed at the turn from one flight to the next. The landing beams
(Fig. 1.9) are designed as rectangular or flanged beams, for the reac-
tions from the two flights or steps on one side and the landing on the
other.
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Plate 1.5. Helical stair case
in steel.

1.2.2 Strings or stringers

These are available in steel, concrete, timber and composite. There are
two types of wood string, namely, the open (cut) and the close (closed)
strings. The string enclosed treads and risers are shown in (Fig. 1.1). In
wood their top edges project some 50 to 60 mm above the line of nosing
or tread. Wall strings are closed ones. The outer strings, particularly
those made in timber, are cut to the profile of the treads and risers
and are secured by wood bearers screwed to both strings and treads
or risers in the underside of the flight. A cut out string is shown in
Figure 1.10.
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Table 1.1. Dimensions for stairways.

Step dimensions Gradient designations Headroom Handrail height
Riser R = h; Tread T =G Per cent Angle in Y X
(cm) (cm) grade deg-min (cm) (cm)
12.70 40.64 31.25 17-21 215.9 85.09
13.335 39.37 33.87 18-43 218.4 85.09
13.97 37.465 37.28 20-27 2184 85.09
14.605 35.56 41.07 22-20 218.4 85.09
1524 13429 44.44 23-58 2209 ' 83.82
15.875 ! 3302 48.07 25-40 220.9 83.82
16.51 34.15 53.06 27-57 223.5 ' 83.82 |
17.145 29.845 57.44 29-52 2235 83.82
17.78 27.94 63.63 32-28 226.0 83.82
18.415 26.67 69.04 34-37 228.6 83.82
19.05 25.40 75.00 36-52 2314 83.82
19.685 24.13 81.57 39-12 236.2 85.09
20.32 22.86 88.88 41-38 238.7 85.09
20.955 21.59 97.05 44-9 243.8 85.09
21.59 20.955 103.02 45-51 248.8 85.09
22.225 20.6375 107.07 46-57 263.4 85.36
22.86 20.32 112.50 48-22 251.5 86.36

Minimum for head clearance only can be safely taken as 213.36 cm for all gradients; HUD permits 203.2 cm.
Notes: 1. Consult local building codes on all stair problems. 2. All steps are laid out by the proportion 17.78 cm x
27.94 cm. 3. Risers from 16.83 cm to 19.37 cm are most comfortable for interior stairs. 4. The minimum width for single
file travel is 76 cm but 91.5 cm is more comfortable. A width desirable for furniture passage shall be 107 cm.

N
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1.2.3 Balustrade

The wood balustrade is vividly described in Figure 1.11. Since a metal
balustrade is commonly used with concrete stairs, it is difficult owing
to numerous techniques, to give the meaning full details. One typical

illustration is given in Figure 1.12.

Table 1.2. Recommended minimum clear widths of stairs for furniture movement (cm) we.

Furniture Minimum headroom Unlimited headroom
Atrticle Size Wide Narrow Wide and Narrow Narrow
(cm) U type U type narrow only only
U type U type stair  landing
Double bed 137x198x20.3 96.5 111.8 68.6 - -
box spring
Dressing table 56 x 122 x 76 73.7 73.7 73.7 - -
Divan-club 106 x 218 x 84 142.2 142.2 101.6 91.4 111.8
Divan-average 91 x 203 x 76 132 132 88.9 - -
Piano-concert 274 x 163 x 60 142.2 142.2 96.5 91.4 101.6
grand
Piano-draving 221 x 157 x 46 116.8 116.8 914 - -
room grand
Sideboard 53 x 152 x 97 76.2 76.2 76.2 - -~
Buffet 89 x 99 x 193 121.9 121.9 86.4 - -
Dresser 53 x 183 x 162 132 106.7 101.6 914 11.8
Table (6 people) 106 x 152 x 76 96.5 96.5 96.5 91.4 101.6
Table (8 people) 106 x 213 x 76 142.2 132.1 96.5 914 101.6
Table (10 people) 1932 142.2 142.2 914 - -
Desk-slop top 76 x 122 x 99 99.1 96.5 96.5 914 101.6
Desk-flat top 91 x 183 x 76 99.1 96.5 96.5 - -
Desk-executive’s 96 x 183 x 76 127 127 94 914 96.5
Trunk-wardrobe 58 x 76 x 109 73.7 73.7 73.7 - -

ry

N

[

%fﬂ'{iﬂiﬁmm.m,, ;
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Figure 1.7. A tread-riser
diagram (Time-saver’s
Standards 1991).
Dimensions are accurate to
half-full size, thus, reading
can be made directly
without need for
calculation.

Figure 1.8. Relationship
between rise and going
(with compliments of the
British Standards BS5395,
1977).
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Notes:

1. Steps to find the proper riser for a given tread. Read tread line to a given width and select
riser at intersection.

2. To find proper tread for a given riser: Select riser to nearest 3 mm and read tread width
to nearest 13 mm (or nearest 6 mm by interpolation) at intersection with tread line.

3. To find tread and riser for given height and run of stair: scale run of stair on tread
line. Draw flight to flight height at same scale. Draw pitch of stair. Where pitch intersects
hyperbola, measure riser (at half-full size) to tread line. Read tread width directly or measure
at half-full size.

4. To find run of stair for given height, tread and riser: select riser. Connect intersection
at hyperbola with 0 on tread line, thus, establishing a pitch. Draw flight to flight height to
scale, intersecting pitch and perpendicular to tread line. Run is found at same scale as height
on tread line from O to intersection of flight to flight height.
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Figure 1.9. Three flights
stairs-position of landing
beams.

Figure 1.10. A cut out
string with balusters.

Figure 1.11. Wooden
balustrades.
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Figure 1.12. Steel
balustrade.

1.2.4 Free-standing stairs and their reinforcement layouts

Some of the free standing stairs have been described in Section 1.2.
This section is devoted entirely to this type of stairs in reinforced con-
crete. The support arrangement influences the reinforcement layout. Fig-
ure 1.13(a) shows the cross section detail of a staircase supported on a
central beam. Since each side of the staircase is acting as a cantilever,
the main reinforcement is placed on top with distribution steel. The en-
tire cross section looks like a T-beam. Figures 1.13(a) and 1.13(b) give
reinforcement for the sectional elevation and the plan of a straight stair-
flight supported at each end by cross beams lying between the flight
and the landings. Figure 1.13(c) shows the reinforcement detail when
the cross beams are placed at the end of the landing. When the top
landing is supported by the brick-wall, Figure 1.13(c) is modified and
this is shown in Figure 1.13(d). When the flight is supported on side
beams, the reinforcement details are shown in Figure 1.13(e). It is es-
sential to mention various types of concrete steps, namely the cast-in-situ
and precast concrete steps. They are self evident in Figures 1.13(f) and
1.13(g). Straight stair-flights and landings supported by side or cen-
tre beams as shown in Figure 1.13(h) will require cranked beams. The
structural details depend on the ratio between horizontal sections and
the sloping section. Figure 1.14 shows the stringer beams reinforce-
ment layout for a two-flight staircase with landing. It is interesting to
note the reinforcement layout for the downstand part of the stringer
beams.
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1.2.5 Data for geometric stairways

A brief introduction to these staircases is given in Section 1.1. It is
vital to give brief data on spiral/helical staircases. These staircases are
manufactured in a variety of diameters. The most common materials for
tread and platform are steel, aluminium and wood. Steel and aluminium
can be smooth plate, checker plate, pan or tray type and bar. A variety of
hardwoods can be used. For exterior or wet area interiors zinc-chromated
rust inhibitor, black acrylic enamel and black epoxy are usual. Platform
dimensions usually are 2” (50 mm) larger than the stair radius. Table 1.3
gives specifications for spiral and helical stairs. Where horse-shoe shapes

Table 1.3. Specifications for spiral/helical stairs parameters.

Diameter (cm) 101.1 121.9 132.0 152.4 162.6 182.9 193.0 2235 243.8
Centre column (cm) 10.1 10.1 10.1 10.1 10.1 10.1 10.1 16.8 16.8
Weight (kg) 93.9 99.8 106.6 1134 120.2 140.6 147.4 197.3 220.0
Tread detail A’ (cm) 10.1 10.1 10.1 10.1 10.1 10.1 10.1 16.8 16.8
Tread detail B’ (cm) 45.7 55.9 61.0 71.1 81.3 86.4 91.4 106.7 121.9
27 tread detail C’ (cm)  23.5 28.3 30.8 327 37.8 42.5 44.8 52.0 56.7
27 tread detail D’ (cm)  19.4 20.3 21.0 222 21.6 21.9 21.0 254 26.7
30 tread detail C' (cm)  26.7 319 34.6 397 425 48.0 50.5 58.4 63.8
30 tread detail D’ (cm)  21.6 21.9 22.2 225 229 23.5 23.8 28.9 29.2
Landing size (cm) 55.9 66.0 71.1 81.3 86.4 96.5 101.6 116.8 132.0
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Table 1.3 (cont.).

B’ Framing dimensions (cm)
,.
, , Stair
A3 IC diameter  2.54 5.08 762 1016 1270
305 mm 40 50.8 50.8 67.0 111.8 111.8
Sector in ol 48 67.0 67.0 71.1 132.0 1320
a) Sector in plan 52 66.0 66.0 76.2 1422 142.2
60 76.2 76.2 68.4 162.6 162.6
: 64 81.3 81.3 91.4 172.7 172.7
(Dmd)\ 72 91.4 914 101.6 193.0 193.0
- 76 96.5 96.5 106.7 203.2 203.2
¥ 88 111.8 111.8 121.9 233.7 233.7
96 1219 121.9 132.0 254.0 254.0
27 riser table 30 riser table
Finish floor Number Circle Finish floor Number

height (cm) of steps degree height (cm) of steps

228.6-243.8 11 297 215.9-241.3 9

246.4-264.2 12 324 243.8-264.2 10

266.7-284.5 13 351 266.7-289.6 11

) 287.0-304.8 14 375 292.1-312.4 12

! 307.3-325.1 15 405 315.0-337.8 13

' 327.7-345.4 16 432 340.4-360.7 14

" 348.0-365.8 17 459 363.2-386.1 15

! 368.3-386.0 18 486 388.6-408.9 16

H 388.6-406.4 19 513 411.5-434.3 17
T | 408.9-426.7 20 540 436.9-457.2 18

d) Framing dimensions

F=r
—

¢) Reinforcement details of treads and columns

Formulae
G (outer going) = 2(r; — 270°) sin6/2

Clear headroom = r; — r., where r¢ is the radius of the column or post at the centre.

G (inner going) = 2(r, — 270°)sin6/2

Clear headroom: 2H; = hq(¢/6) —t., where ¢ = the angle of rotation at a distance along radius, 8 = the angle of taper
of tread, hy = the rise, f; = the thickness of landing.

Minimum splayed straight length L = B’ + 2/3 x bearing.
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are involved, the data for helical stairs circular in plan are modified to
include the geometry of the inclined straight arms. The data collected are
from countries such as Britain, Spain, USA, Germany, Sweden, Pakistan,
India, Italy, Turkey and Japan.

1.3 LOADS AND LOAD COMBINATIONS

Loads and their combinations vary from one country to another. The
partial safety factors associated with these loads vary as well and they
largely depend on whether the stairs are analysed by the elastic, lim-
it state, strength reduction and other concepts. In general, it is easy to
compute dead loads and loads due to self weight and finishes. The dis-
agreements are on the imposed loads (3 kN/m? to 5 kN/m?) and the
partial safety factors for loads and materials. Several examples in the
text will indicate this dilemma. The general opinion is that steps should
be loaded also with concentrated loads. The British practice is to check
individual treads by placing on them two loads of 0.9 kN at 300 mm
spacing and placed symmetrically about the centre line of the tread. For
details individual codes shall be consulted.

1.4 MATERIALS AND STRESSES

For materials and their allowable stresses, individual codes are referred
to. In the absence of such codes(s), Table 1.4 should be consulted for
the preliminary analysis and design of staircases.

1.5 ADDITIONAL SPECIFICATIONS FOR THE REINFORCEMENT
OF CONCRETE STAIRS

1.5.1 Reinforcement size

A standard range of bars and sizes is available for use in reinforced
concrete. They may be hot-rolled (mild steel, high yield steel) or cold
worked (high yield steel). Bars are made in a range of diameters from
8 to 40 mm. Special sizes of 6 and 50 mm are seldom available. The
specification for steel covers chemical composition. Tensile strength,
ductility, bond strength, weldability and cross-section area can be found
in various codes.

1.5.2 Fabric

Fabric reinforcement is manufactured to BS4483 and to ASTM 1992
requirements. There are four types of fabric made from hard drawn mild
steel wire of fy, = 485 N/mm* or from cold-worked high yield bars:
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a) Square mesh fabric: regular bars of lightweight (A type). They are
used in walls and slabs.

b) Structural fabric: main wires 100 mm crs (B type) cross section of
wires 200 mm crs.

¢) Long mesh fabric: main wires 100 mm crs (C type) cross wires
400 mm crs.

d) Wrapping fabric: lightweight square mesh (D type) encased con-
ditions or fire resistance main wire cross-sectional area 252 mm?, fy =
250 N/mm?.

Table 1.5 gives the necessary data for bars and fabric reinforcement.

Table 1.4. Materials and stresses: steel, concrete, aluminium and timber.

Country Steel Concrete CI
UK a) steel bars C25 to C40 grade BS5328
hot rolled: fy = 250 N/mm? fe =25 N/m? to 40 N/m? BS5950
high yield: f, = 460 N/mm? E.(average) = 20 N/m? BS8110
Es =200 GN/m?; v = 0.3 v=0.15t0 02 BS648
b) steel sections and plates — varies ft = 1/10 of C in general
unit mass = 2400 kg/m>
=23.6 kN/m3
USA a) steel bars (psi) grade fe — cylindrical concrete ACI318
yield stress f;, = 40,000, strength 3000, 4000 (psi); AISC Specifications
70,000; 60,000; 90,000 E. =3 x 10° (psi) (20 kN/mm?) 1995
b) steel sections and plates v=20.151t0 02 ASTM Specifications
Typical steel (values in Ksi) 1995
A36-30-36; 48-60
AS572-42-65; 63-70
AS572-42-65; 75-80
v = 0.3; G = shear modulus
= 11,000 Ksi
E;s =30 x 10° (psi) (200 kKN/mm?)
EUROPE a) steel bars S220; S400; S500 C12/15 to C50/60 Eurocode 2
b) steel sections and plates feu =12 N/mm? to 50 N/mm? DDENV 1992
Fe360; Fe430 to Fe510 fr = 1.6 N/mm? to 4.1 N/mm?
yield stress f, 235 N/mm? to E. =20 GN/m? Eurocode 3
332 N/mm? v=10.1-0.2 DDENV 1993
Ultimate stress f, = 360 N/mm? to EN 10025
470 N/mm?
Es =200 GN/m?; v = 0.3
CANADA  steel bars N/mm? fe =20 N/mm? or 30 N/mm? CSA A23.3 M84
grade 300 350 400 E. = 20 GN/mm?
fs = 400 350 400 v=0.1to0.2
fs = 400 550 600
Es = 200 GN/m?
v=0.3

steel sections and
plates same as USA
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Table 1.4 (cont.).

Country Aluminium Timber Cl

UK same as USA class S; to S7 - 37510 15 N/mm? BS5268
shear 2 to 4 N/mmz; class SC3 and SC4
o bending = 7.5 N/mm?
¢ compression = 2.4 N/mm?

Ghear = 0.7 N/mm?
Emean = 9900 N/mm?
Eemin = 6600 N/mm?>
hardwood 75 x 75 post

o bending = 18.1 N/mm?
E = 13,600 N/mm?

G 660 to 570 N/mm?

USA ASTM
6061-H116 t = 483 N/mm?; f, = 370 N/mm? 2024-7351*
¢ = 140 N/mm? t =323 N/mm?; fy = 308 N/mm? 6061-7651"
t = 150 N/mm? t = 590 N/mm?; fy = 542 N/mm? 7075-7651%

G shear = 105 N/mm?
fy (yield) = 286 N/ mm?
o bending = 133 N/mm?

EUROPE Not available hardwood softwood Eurocode 5
=Cl14 to C40 =D30 to D70 ECS
Jm ke =14 to 40 =30to 70
frox =8t024 =18 to 42
Sfeok =161026 =23t024
Jok =1.7t0 3.8 =3.0t06.0
Eomean =7000 to 14,000 =10,000 to 20,000
Gmean =440 to 880 =600 to 1250
CANADA same as USA o bending = 11.6 to 8.58 N/mm? CSA 0121-M

¢ compression = 7.99 to 5.04 N/mm?
H shear = 0.36 to 0.38 N/mm?

E = 10,550 to 4150 N/mm?

G = 660 to 570 N/mm?
v=0.11t003

fe = compressive stresses; f; = ¢ tensile stress; CI = Code identification; C (Cube strength) = fo,; * o = stress in
bending; Tt = tensile stress; ¥ fy = stress at yield. For all the following, values are in N/ mm?: [,k = stress in bending;
ft.0.x = tension // to grain; fc o x = compression // to grain; f, x = shear, Eomean = mean Young’s Modulus // to grain;
Gmean = mean shear modulus.

1.5.3 Cover to reinforcement

The distance between the outermost bars and the concrete face is termed
the cover. The cover provides protection against corrosion, fire and other
accidental loads. For the bond to be effective cover is needed. Various
concrete codes allow grouping or bundling of bars. In this case the
perimeter around a bundle determines the equivalent area of a ‘single
bar’. The cover also depends on the grade of concrete and the full range
of exposure conditions.
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Table 1.5. Bars and fabric reinforcement with concrete cover.

Bar designation

Britain, Europe, Japan and 6 8 10 12 16 20 - 25 - 32 - 40 - -
Russia bar types (mm)

USA, Canada, S. America bar

types (mm) denoted by # -~ - #3 #4 #5 #6 #7 #8 #9 #10 #11 - #14 #18

Area (mm?) 28 50 78 113 201 314 387 491 645 804 1006 1257 1452 2581

Mesh type Size of wires (mm) Area (mm?) Weight (kg/ m?)
main Cross main Cross

1. Square mesh fabric (200x200)

A393 10 10 393 6.16
A252 8 8 252 395
A193 7 7 193 3.02
Al42 6 6 147 2.22
A98 5 5 98 1.54
2. Structural fabric (100x200)

B1131 12 8 1131 252 10.90
B785 10 8 785 252 8.14
B503 8 8 503 252 5.93
B386 7 7 385 193 4.53
B283 6 7 283 193 373
B196 5 7 196 193 3.05
3. Long mesh fabric (100x400)

C785 10 6 785 70.8 6.72
C636 9 6 636 70.8 5.55
C503 8 5 503 49.0 434
C385 7 5 385 49.0 341
C283 6 5 283 49.0 2.61
4. Wrapping fabric 25 25

D49 (100x100) 49 49 0.76
D98 (200x200) 98 98 1.54
Conditions of exposure Nominal cover (mm)

Mild 25 20 20** 20** 20**

Moderate - 35 30 25 20

Severe - - 40 30 25

Very severe - - 50t 40*** 30

Extreme - - - 60*+* 50
Water/cement ratio 0.65 0.60 0.55 0.50 0.45

Concrete grade C30 C35 C40 C45 C50

*All values in the table are for #ag; maxsimum aggregate size of 20 mm.
**To be reduced to 15 mm provided Zagg > 15 mm.

*** Alir entrainment should be used when concrete is subject to freezing.
* Could be increased further if needed.
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CHAPTER 2

Structural analysis of staircases:
Classical methods

2.1 INTRODUCTION

This chapter deals with classical methods of analysis. The author has
reproduced these methods clearly by adopting uniform symbols. Wher-
ever possible the reader is given a positive basis for understanding these
methods by explaining the basic philosophy of each method and the
assumptions associated with it. Examples are given of these methods
so that students and practising engineers can easily translate them in-
to practical problems. Most of these methods are based on the Strain
Energy concept.

2.2 METHODS FOR FREE STANDING STAIRS

These are the following: Bangash Generalised Method based on Gould’s
(1963) numerical solution (uniform loads with various boundary con-
ditions); Taleb’s Method (1964) symmetrical and asymmetrical loads;
Methods of Space Intersections of Plates; Liebenberg Method (1956,
1960, 1962) and Siev’s Method (1962, 1963).

2.3 METHODS FOR HELICAL STAIRS

For helical stairs, two methods are used: Morgan’s Method (1960) and
Cohen’s Method (1955).

2.4 A GENERALISED ANALYSIS OF A CANTILEVER
STAIRCASE

The author has developed a generalised analysis based on the original
work done by Gould P. (Journal of the American Concrete Institute,
1963) which is summarised in Section 2.4.2. Here the Strain Energy
principle is adopted. The staircase is considered as a frame and the



24 Structural analysis of staircases: Classical methods

moment at the intermediate landings is transferred between the legs by
torsion developed through the landing. This method depends on the type
of support conditions at the upper landing. In order that the staircase be-
haves as a frame, vertical and horizontal forces must also be transmitted
between the legs of the staircase through the landing. These should act
through the centre line of the landing parallel to the longitudinal axis
of the legs and are eccentric on the legs. The additional bending and
torsional moments at the intersection of flights and landing have only a
minor effect on the design and are thus ignored.

2.4.1 Notation for the analysis

b = width of the supporting beam;

H = horizontal reaction;

H;, H = heights;

E = modulus of elasticity (Young’s modulus);
Ky = horizontal spring constant

Ky = rotational spring constant } kN/m or lb, kip/ft;
Ky = vertical spring constant

L = length;

M = bending moment;

R = reaction;

T = torsional moment;

U = strain energy.

2.4.2 Gould’s method (July 1963)

Notation for the analysis
b = width of intermediate landing, in;

b = long dimension of the tie or hoop, in;

c = width of supporting beam, in;

d = depth of stair slab, in;

e = Mp/P measured from centroid of base, in;

e = distance from centroid of footing to line of action of P’, in;

fs = allowable stress in reinforcement, psi;

h = depth of intermediate landing, in;

K = short dimension of the tie or hoop, in;

§ = spacing of ties in landing, in;

t = depth of supporting beam, in;

w = width of stair slab, ft;

Aqgl = area of horizontal steel perpendicular to ties in intermediate
' landing, sq in;

Agv = area of all shear reinforcement at a given section in the inter-

mediate landing, i.e. the area of two bars in the hoop, sq in;

C1 = 642+ EI/1.3Ky;

Cy = 8754 EI/1.3Kpy;

C3 = 1583+ EI/1.3Kp;

E = modulus of elasticity, kips per sq in;

F = ratio of actual length to horizontal projection;
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I bx

Amn,
Ay,
Ap,
w

integration factor;

integration factor;

shearing modulus, kips per sq in;

horizontal reaction at nth support, kips;

moment of inertia of the stair slab, in%;

moment of inertia of the supporting beam, about the horizontal
axis, in%;

moment of inertia of the supporting beam, about the vertical
axis, in’;

horizontal spring constant of support, kips per ft;

rotational spring constant of support, ft-kips per radian;
vertical spring constant of support, kips per ft;

length of the supporting beam, ft;

bending moment at base of staircase, ft-kips;

bending moment at Point m in Member mn, ft-kips;

axial load on the base of the staircase, kips;

equivalent axial load applied to the footing at an eccentricity ¢/,
kips;

torsional moment at intermediate landing, ft-kips;

strain energy due to bending, ft-kips;

vertical reaction at nth support, kips;

shear at m in Member mn, Kips;

elastic torsion theory constants for rectangular sections;

angle of twist per unit length, radians;
total angle of twist, radians;

horizontal deflection of nth support, in;
vertical deflection of nth support, in;
rotation of nth support, radians;
torsional shear stress, psi.

Torsion at intermediate landing
The maximum torsional shear stress can be approximated by the formula:

T

®= abh?

The coefficient a is itself proportional to b/ k but approaches a limit of 0.333
for large values of b/ h.

2 Ms

Mpa=T — ——

Mpc =T — ——
Mpa + Mpc =2T
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T — Mpa + Mpc
2
10.0’ 4.0’
L
load = 0.992 k/1 horizontal proj.
3
4.0’ . : ®
—
load = 1({3\2;/1—I
load = 0.992'k/1 H.P. §
______ 5.83 N\
= SECT.A-A e
<

Elevation of cantilever staircase showing dimensions and loads

STRAIN

e

y
;

Case A Case E
'f\\

v
;

Case B Case F

v
Y

Case C Case G

Y

Case D

Support conditions for Cases A through D
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Case A - vertical reaction at point A

10
aU 1
— = — | (Vax — 0.496x%)x dx
aVs  EI / (Vax = 0.496x7):
0
. 5.83
+ I / [O.496x2 + 16.4x — 36.6 + V4 (10 — x)][lO —x]dx
0
=0
After the necessary integration has been performed:
aU
—EI =—-856+642V4 =0
V2 + A
Hence,
V4 = 1.33 kips

Mp =76.0+4.17 x 1.33 = 81 ft-kips

Vp = 22.18 — 1.33 = 20.85 kips

Mpa =10 x 1.33 — 49.6 = 36.3 ft-kips (clockwise)
Mpp = 10 x 1.33 — 36.6 = 23.3 ft-kips (anticlockwise)

23.3 +36.3
T = B3+363 29.8 fi-kips

Case B - horizontal and vertical reaction at point A
> Mp=—49.6+11.7—8.04Hy + 10V4 =0

D> Mp=-761-3.6+417V4 — 13Hy =0
Ha = 9.10 kips

V4 = 11.08 kips

Vp =22.18 — 11.08 = 11.10 kips

Mpa = 11.7 ft-kips (clockwise)

Mpp = 1.3 ft-kips (clockwise)

11.7-1.3
T=—"_"" =52 ft-kips
2

Summary of reactions and moments.
Case Va, Vp, H, Ma, Mp, Mpa, Mpp, T,

kips kips kips ft-kips ft-kips ft-kips ft-kips ft-kips

(anticlockwise) (clockwise) (anticlockwise)

A 1.33 20.85 - - 81.00 36.30 23.30 29.80
B 11.08 11.10 9.10 - 3.60 11.70 1.30 5.20
C 12.00 10.08 8.89 7.90 2.20 8.98 4.02 2.48
D 1.27 20.91 - - 81.30 36.90 23.90 30.40
E 6.35 15.83 4.95 - 38.00 25.90 12.90 19.40
F 6.59 156.59 5.02 1.40 36.90 25.40 12.40 18.90
G - 22.18 - - 76.00 49.60 36.60 43.10
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g

Wk/a’
T
Mpsa
T
Y:
o
Wkia'
Moment acting on landing
a) 10.0 4.0
A
0.922 k/1 H.P.
7
o 3
-
0.992 k/1 H.P. B 1.62 k/1
A% 3
<
D
5.83
[ os8
0.992 k/1
A
My VAT
~
P\

BN 10 Va—49.6 = Maa

INTEGRATION FACTORS

3 =}g-:gg=1.3

Fo=4£88-13

My = V4 x~ 0.992 ";z

oM _
1A

SIGN CONVENTION
Compression on outside face
represents positive moment.

1 Vga= V4—9.92
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b)

(» 10 V4 -49.6

V4-9.92 1.62 k/1

C 2
4 130=162%

\l 10 V4 —36.6

Va-16.4

c)

0.992 k/1

M, = (10 V4 — 36.6) — (V4 —16.4)x+ 0.992%

B

j10 V4—36.6 = Mgp
YVA— 16.4

g = V4(10— X) — 36.6 4+ 16.4x+ 0.4962 2
M
Vp=22.18- Vj 1 av,=10-x
at x=5.83

Mp=417 V4 + 76

Free-body diagrams of staircase members assuming a vertical reaction at Support A

a)

SIGN CONVENTION
+ \on member
Ba=0.992. %2= 12.4
_ 5.83%_
Bp=0902- 2 =28
Be=162 ¥=13
X c= 1. « =
,“Q 2
>
72
c
c)

B;) 1.7

Y. Mg (of loads)
9.92-5=496

Y. Mp (of loads)
9.92.0.83=8.25

6.48-7.83=50.70
5.80-2.91=17.00 1k
75.95 say 76
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Case C - fixed support at point A
The method of analysis is exactly the same as that of Case B so only the

results are presented.

V4 = 12.0 kips
Vp = 10.08 kips
H, = 8.89 kips

Mp4 = 8.98 ft-kips
Mpp = 4.02 ft-kips
8.98 —4.02

T = ~———— =248 ftkips

Case D - vertical reaction of flexible support at point A
This case is similar to Case A except that the support at point A is flexible.
Assume that the support may be represented by a spring such that:

Va
Ky = —&
V= AV,
W V4
aVy K
1%
(—856 + 642V4)1.3 = ——AET
Ky
Vi o 856EI
42
6 +1.3KV
856 El
Vi=—...: C;=642
A C1 ! + 1.3Ky

Case E — vertical and horizontal reactions on flexible supports at point A
This case is similar to Case B. However, since deflections are involved, the
method of solution will be different. The supports will be treated as springs
with constants Kz and Ky .
Castigliano’s theorem will then become:

U V4
aV4 Ky
14 Hy

3Hs  Kn
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10
U 1
Vax —0.804Hsx — 0.496x%)x dx
3V,  EI (Vax A% =)
0
] 5.83
+ 7 / [0.496x% + 16.4x — 36.6
0
+ Va(10 — x) + Ha(—8.04 — 0.85x)](10 — x) dx
=5
AU 1.3 Va
= 27 (—870 — 689H 4 + 642V,) = ——~
5V 7 (870 — 689 H, + 642V,4)
and
U 13 Hy
—— = (=870 — 689H, 4+ 642V,) = ——2
dH4 ET A+642Va) Ky
where, ’ '
598,000 + 310C;
A= C1Cy — 474,000
V. _ 213,000 + 870C
A= "CLC, — 474,000
EI
Cy =87
2 =875+ 13Ky
! 10
571: = =7 / Vax — 0.804 Hax — 0.496x2)(—0.804x) dx
0

5.83
=7 f [0.496x2 + 16.4x — 36.6 + V4 (10 — x)

+ Hy(—8.04 — 0.85x)][—8.04 —0.85x] dx
=Xy
Case F — partial fixity at point A
If restraint to rotation proportional to the angle of twist is assumed at
point A (Ky = M/®), the effect of the moment may be accounted for
in a similar manner as the elastic deflections of the supports. The equations
of Case E — may easily be modified by the addition of a M 4-term to the
moment expressions. An additional equation is obtained from this condition.

oU MA

oMy KM
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X
r 0.992 k/1
K

H I 1 1 ¥ ¥ M,(—VA,(—1°QHA,(—O.992)§2

Hy
A M
20 Vi
M_
T Va SH= 0804 x
Hy
D Mga = 10V, —8.04H, —49.6
Vaa= V4 —9.92
b) Mon
HA h—
42

1.62-5=13

Ha—=2, Mgp =10V, —8.04H, —36.6

Vap= V4 —16.4
c) x
v ¥ ¥ FI%)MBD”A
rVBD
- _ _ 4.96,
My = (10Vs ~8.04Ha — 36.6) — (Va — 16.4) X~ Ha gz X
+0.992%
D =0.496)2 + 16.4x— 36.6 + V4(10 = X) + Ha(-8.04 — 0.85%)
Mp=4.17V4—13Hs + 76 oM,
D A A av 10-x
oM_

- -8.04-0.85 x

Free-body diagrams of staircase members assuming a flexible vertical and horizontal reaction at Support A

The three equations are then

10
U 1
— = Vax —0.804Hax — 0.496x% — M) (—1) dx
oM, EI (Vax AX X 4)(—1)
0
! 5.83
+ 27 [0.496x% + 16.4x — 36.6 + V4(10 — x)
0
+ Ha(—8.04 — 0.85x) — My ](—1)dx
My
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10

=7 / (Vax — 0.804Hux — 0.496x — Ma)x dx
A

<

1
+— / [0.496x% + 16.4x — 36.6 4+ V4(10 — x)
0

+ Hp(—8.04 — 0.85x) — MA](IO —x)dx

1
+ == / [0.496x% + 16.4x — 36.6 + V4(10 — x)
0

+ H4(—8.04 — 0.85x) — MA](—8.O4 — 0.85x) dx

After the necessary integrations have been performed, the equations simplify
into the following expressions.

1.3 M
—(66.6 — 91.3V4 + 101.4Hy + 15.83M,) = ——2
EI Ku
1.3 Va
——(—870 + 642V — 689H4 — 91.3M4) = ——=
EI( + A A A) Ky
1.3 H
—Z(—310+ 688V, + 875H + 101.5My) = ——2
El Ky

From these expressions we obtain:

—7,210,000 4 870C>2C3 + 214,000C3 — 6080C;

YA = 15750000 = 10,300C; — 8330C; — 474,000C; + C1C2C3

Hy = 14,850,000 + 6780C; + 598,000C3 + 310C;C3
12,750,000 — 10,300C; — 8330C; — 474,000C; + C1C2C3

M = ——2:900,000 — 31,500C1 +79,500C; ~ 66.6C1C,
12,750,000 — 10,300C; — 8350C, — 474,000C; + C1C5C3

where,

Cy = 15.83 + —L1

13Ky
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The values for reactions and moments are summarized in the table in Case E.
The results obtained, considering the partial fixity against rotation, are similar
to that of Case E, indicating that the added restraint has only a small influence
on the moments and reactions.

Case G — free end at point A

The results may be obtained from statistics and are tabulated in the table in
Case E. This case is presented to show the influence of the various restraints
on the upper leg.

Properties of supporting members
Supporting beam. For Cases D, E and F a supporting beam is assumed with
the following dimensions and section properties.

Size: ¢ = 12in;t = 18 in; L = 20 ft simple span restrained against
twist at ends; E = 3 x 103 kips per sq in; G = 1 x 10 kips per sq in;
Ipx = 5830 in*; I, = 2590 in*

48E1, _
H="73 Y = 324 kips per ft
48E]
Ky = L3bx = 732 kips per ft

Torsion = rBtc3G
The 20-ft beam will act as two 10-ft cantilevers fixed against rotation:
d 1

L~ 20
t/c = 1.5; B = 0.196 and Ky = 4240 ft-kips per radian for each 10-ft
cantilever or 8480 ft-kips per radian total.

Staircase:
w=4ft, d=26.5in
48 x 6 x 53 4
| = ———— = 1100 ft
12
Constants:
22,900
C1 =642+ —""_ — 6661t
1= 0424 73 s = 000
22,900 3
Cy= 875+m = 920 ft
22,900 3
C; = 15. —  =20.001t
3= 1583+ 5= 1010
Typical design (Case A)

Torsional reinforcement
From Figure 5b and Reference 3

T = 29.8 ft-kips
b/h=3.04
o =0.267\ = 0.845
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a)

X
ro.ssz K1
Hay K i

K @ M= Vax— 804K, - 0.9925 - My
M, oM_
A2 Ky Vs X
Ha aaﬁ’f ~0.804 x
tVA lJMBA= 10V4-8.04 Hy—496  Sr=-1
Vaa= Va—9.92

H——>
AT X+ Mgp = 10V, —8.04H, ~36.6
l Vep=Va—16.4

c)
0.992 K/1 x

T 3 7 1 7 1.M

My = (10V - 8.04H, — Ma— 36.6) — (V4 — 16.4) x- Hs £:38 x
+0992%
=0.496)2 + 16.4x— 36.6 + Va(10 — X) + (~8.04 — 0.85x) — My

oM_ 10_
a—VA-10 X

\% Mp=4.17V4—13Hs— My + 76

D IM_ _g04 -0.85x
9Ha
oM_ _4
M,

1 (29,800 X 12) — 113 psi

© = 0.267\15.752 x 48

Ties

Ao — Ts
VTN

Then,

Mgy fsb'H
5§ = ——
T
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For #4 ties
Agw =2x0.20=0.40sqin
0.845 x 0.40 x 20,000 x 45 x 12 )
s = =104 in
29,800 x 12

Hence, for design use #4 ties at 8 in.

Horizontal bars
For horizontal bars, an equal volume of steel is provided.

b+ H 0.40
N

Hence, for design use 10 #5 = 3.10 sq in.
Additional reinforcement will be required near the junction for one-half the
torsional moment:

b/h=10 b =12in
r~=0.835 A =12in

Ties

_Ts  0.5x29,800x12x8
TONfb'W T 0.845 x 20,000 x 12 x 12

This reinforcement is provided by #4 bars at 8 in alternate spacing.

Agy =0.60sqin

Horizontal bars

0.40
Ag = e x 24 =1.20sqin

For design use 2 #7 bars.

g
[« T [e] [e
3
(3]
B c 2
N
£
Q Q
b=4'-0
Typical torsional reinforcement b=48"
h=15.75"
b'=45"

h'=12"
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2.4.3 Case studies: Bangash generalised analysis based on Gould
(July 1963)

Case I: vertical reactions at D

oU Mdx oM
—=9dp= | — — 2.1
9Rp EI 3Rp
since
y_ 1 [ M%dx 2.2)
2 EI ‘
x2
M, = moment at a distance x = Rpx — wl—i— 2.3)
Figure 2.1(a) Rp = Rp —w1Ly Rp = Rp+ wil; 2.4)
(DlL%
Mpa = RpL; — 5 (2.5)
Figures 2.1(b) and (by)
reaction at D:
Rp —wiLy
colL%
Mpp = RpL; — 5
L (2.6)
Mp = 0022 3

1
Myp = RpLy — 5(w1 L] — waL3)
reaction at A:

1
Msp = RpLy — (0L} = 0ol = Vp — (03La+ woly)  27)

o L] wL?
M, = I:RDLZ - [ z_ =34 [RD —{wi1Lly + (D2L3}]

2 2
w1x2
2
(,01L2 (,02L2 1 wyx?
RD(Lz—x)“|: 21—73}5 12 (2.8)
M =Ly—x (2.9)
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? D = o, / unit length

%)
2
@l
3 f RpLy- 72
Rg=Rp-w L, l
4 L
by) x ©) o
[~ @/ unitlength B
DL T 7 ¥ 1 13 ;
- |
1
M RDT !
{
4
P\ / Ly \

B) \—TRD“((’)l +ay)

Hj, =nhy; Hy = nhy; hy, hy are step heights

d

Ky,

Figure 2.1. A cantilever staircase under loads.
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M4 p from the above equation is written as (x = L)

2 2 2
w1L woL 1lwx
MAB=<L2—L1>RD—[ L _ 3} ~

2 2 2 2

1 w1 x2
=Rp(Ly — L1) — 2 (x)1L1 (,02L3 + 2 2.10)

since,

L 2
1 1w1x
A dx
aRD EI /( )x
0

Ly 2 12 12
1 w1x ® w2
+ = |:1—+(w1+w2)x-—{#——-3-—]:|
0

4 2 2

+Rp(Ly —x)*dx =0

2.11)

L? wal}
+7{w1+w2—2L2}+L1{ 5 +L2]=0

but

3U Rp, 5 [o1L}
El— =2 (L3’ - [ —=2
Ry~ 3 Y < 16

Hence Rp can now be evaluated from Equation (2.11).

By substituting the value of Rp into Equation (2.10) the value of
M 4p is computed.

The other values are written as

Ra=wi(L2+ L1) +w2Ll3 — Rp (2.12)
u)lL%
MBD=RDL2—T and Mpa = Map (2.13)

is already calculated

Mpa + {RDL2 _—

Torque T = (2.14)
from statics the values of Hp can be evaluated.

Gould (1963) has introduced the effects of a vertical flexible support
at D.
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Case II (Case B of Gould): vertical reaction when the support D
is flexible

Here Gould provides a flexible support at D. Let K be the stiffness of
the spring. Case I is now modified.

Rp
K, = — 2.15
"= 3Rp (2.15)
aU R
I (2.16)
dRp K,
hence
Rp 3fwily  Rp 3 —Swi+4
——EI=C|L — Li| ———
K, [ 2( 6 T3)TH 12
(2.17)
L? w2 L2
+—2—(w1+w2+2L2)+L1< > +L3)|=0
where C — intergrating factor
L] L,
C=Ci=— cC=C 2.17A
1=, o 2=7, ( )

Rp can now easily be calculated from Equation (2.17).

Case III (Case C of Gould): vertical and horizontal reactions on
flexible supports at D

Again Gould suggests two flexible supports A reference is made to
Figure 2.1(e) to (g) and generalised equations are given by

aUu —Rp

R T (2.18)
U —_
Mgp = RpLy — HpH, (2.20)
wlL%
Rpp = Rp —wily — >
Hy w1x?
M, = Rpx — L—2HDx >
oMy _ 2.21)
dRp
IM, H2

0Hp L2
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€) x D
Hp Ky D (O] / unit length
L,
Ky
Rp
B Hz=Hp
L Mpp
Rp
g X h) x
Mpp
@/ unit length Q—|MBA
Hp
B
Rp4
A
o Myp

J)
@ /‘.mlt length MB4
. ’\V -

1RBA

Mg\

Figure 2.1 (cont.).
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w1L% sz%
Mps = RpLy — HpH; — T (2.22)
Rpa = Rp — {w1Ls + w2L3} (2.23)
w1L2  wpL?
M, = RpLy — HpH, — Pty P23
2 2
Hp x2
— {RD —(w1Ly + w2L3)}x — HDL_lx +(x)1—2— (2.24)
IM
z = Ly —x,
dRp
oM H
X = _Hy— = )x,
dHp L
Mx _ 4 (2.25)
dMpp
Hence from Equations (2.18) and (2.19)
L, 2
aU 1 H, 1wyx
~— —— | |Rpx - (Ho = Z2x)Hp — = dx
aRp EI [D’C(zL") 22}‘
0
i P
w1x
—_— - L L
+EI |:2 > + (w1Ly + w2L3)x
0
wiL? L3
- =3 Rn(L> —
( > > + Rp(Lz — x)
H —R
+Hp(—H 2 ) [(Ly—x)dx = =2 (2.26)
Ly Ky
Ly 1 2
oU 1 w1X
—— — — | |Rpx — (HaHpx—) — = —Hyx) | dx
3Hp EI/[DX (H,Hpx—) ) ( 2X)]
0
1 7 1 wix?
w1x
— - L L
+EI [2 3 + (w1L2 + w2L3)x
0
2 2
oL w@2l3
_{=Z1_ =3 Rn(Ly —
( 5 5 + Rp(L2 —x)
H —H
+Hp(-H L) [y —x)dx = =2 2.27)
Ly Ky
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Case 1V (Case D): vertical and horizontal reactions on flexible
supports (support F with partial fixity)
It is assumed that the restraint to rotation is proportional to the angle of
twist at support D(M/¢) = K.

Case III is modified by adding the Mpp term to the moment ex-
pression. Again a generalised method is given, based on Gould (July
1963).

aU _ Mpp
dMp Ky
H 2
My = Rpx — —2Hpx — 22X _ Mpp 2.27)
L, 2
Figure 2.1(h)
) oM,
a =x
dRp
oM,
b = —H
) Hp 2%
oM,
=-1
© dMpp
(.olL%
a) Mpp =RpLy— HHp — 5
u)lL%
b) Mpp =RpLy;— HyHp — — (2.28)
colL% sz%
¢) Mpc =RpL;—~ HHp —~ )
Figure 2.1(i)
(x)lL% sz%
My = [RpL;] — HHp — Mpp — T
oL,  wx?
— | Rp — (w1Ly + wpL3) — HDT + 2.29)
1 2
oM oM H IM
L= (Ly—x), —t=—Hy——, X~ 1 (2.30)

ORp dHp Lq oMpp
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Three equations are finally derived

Ly
U 1 1 wyx?
A) — =—— [ (Rpx — HbHpx — = — Mpg )(=1)dx
(A) My E] <Dx 2Hpx — 35— DB)( )
0
Ly
1 2
+ El [2}2&- + (w1Ly + wyL3)x
0
wlL% w2L§
—( T + Rp(Ly —x)
+ HD(—Hz - —1x> - MDB](—I)dx
_ _Mbs (2.31)
Kum
or
1 Mpp
—[C1Rp + C2Hp + C3001 + C402 + CsLiMpp] = ——— (2.32)
El Ry
where

C1=2(L1+ L)% Cp=2(-HL}+2H,L)Hp

L2
C; = 2<—L%L2 + Ts%) Cy=2(—-L3—LiLY), Cs=2HLi+L

Ly
U 1 w1x?
B) — =—— | (Rpx —HHpx ——— - M dx
(B) 3Rp 71 < DX 2»Hpx 4 DB>x
0
Ly 2
1 wyx? (DlL% w2L3
— et L)x — | — - =23
+E/[ 1 + (w1L2 + w2L3)x ( 5 >

0

H
+ I:RD(LZ —x)+ HD(—H2 - L—:x)

R
_ MDB](Lz —x)dx=——2 (2.34)
Ky
or
1 Rp
—[C6RD + C7Hp + Cgw1 + Cowg + CIOMDB] = —— (2.35)
El Ky
where

1
Co = §(L§ +L3) = LiLy(L1 + Lo)
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L? H{L{L
c7=—H2L2(L1+—3-3) _ 121 2

5 1 5 LiL2
CSZL?(—L1+——'"L2>+L3+ 2

6 12 6 2
1 LiLy\ L3Ls (2.36)
Cy=—-LLy( L{L3 — L* — — .
9=75L1 2( 1L3 3 ) ) 3
1 H;
L2 B+ 22
+2 1( 2+L1>
Ly
Cio=L{| ——-1L
10 1<2 2)
Ly 5
aU 1 w1x
A — HyHpx — — Mpg | (—Hpx) dx
© 3H EIf(RDx 2Hpx ) DB>( 2X)
0
Ly
1 w1x2
+E—I— [T+(w1L2+sz3)x

wlL% (ozL%
——==1 Rn(L> —
( 5 7 + |Rp(L2 — x)
H
+ Hp (—Hg - L—lx) - MDB]
1

H H
X (—Hy — L—:x) dx = ——K% 2.37)

or

1 Hpp
-E—I-[CURD + C12Hp + C1301 + C1402 + C1sMpp| = K (2.38)

where,

Cu= —Hz(%?- + Ié) — —f—;(% + %)Lg

Cio= H22(L2 + L;) + Hll,_lL%<H2 _ 1;’15;2)

Cis = Hf6L‘1‘ ~ 71?21,3 ~ %H;fz‘ N L12L2 (H L+ H1L2) 239
comnaao235) S

1

HiL?
Cis = 5<HZL% + —2

+ 2L2)
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EXAMPLE 2.1

Calculate reactions and moments for above cases using the following data for the
cantilever staircase:

Stairs:

L1 =178, HH =150 m

Ly=3048m, H =245 m

L3=122m

w; = 14.36 kN/m

wy = 23.64 kN/m on horizontal projection

E =2.07 x 108 kN/m

Dimensions:

b = 305 mm

L=6m

d = 457 mm

G = 6.985 kN/m?

Ipx = 1078 x 10° mm*

K =48EI/L3

Ky =4728 kN/m

Kv = 10,683 kN/m

total km/radian = 123,757 kN/m

total 2 No of 1/ length of beam = 61,879 kN/m
half length =3 m

T = torsion = 1pdb>G

B = width of stairs = 1.22 m

¢t = thickness of stairs = 165 mm = Dy

Table 2.1. Solution for case studies of a cantilever staircase.

Case 1 Case II Case III Case IV
Rp kN 5.39 5.65 28.25 29.31
Ra kN 92.65 93.00 70.40 69.35
Map KNm 110.00 110.40 51.53 - 50.00
Mpp kKNm 49.20 50.00 35.12 34.45
Mps kNm 35.30 32.41 17.50 16.81
T kNm 42.25 41.20 26.31 25.63
Hp kN - - 22.00 23.33

Note: T = (Mgp + Mp4a)/2.

2.5 A GENERALISED ANALYSIS OF STAIRS WITH
UNSUPPORTED INTERMEDIATE LANDING

2.5.1 Taleb’s method (September 1964)

This method is based on the principle of least work using equations of
equilibrium of the entire stair and hence obtaining expressions directly
for all redundants acting at the supports. In the plane of the flights shear,
tension and compression are ignored. The load cases include symmetri-
cally and unsymmetrically placed loads.
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Notation for the analysis

Ly, H = horizontal and vertical projections of flight length,
respectively;

L3, B = width and breadth of landing, respectively;

Dy = thickness of stair slab (waist);

L, B; = length and width of flight, respectively;

a = angle of inclination of flight;

Hyj, Ry, Ry = reactions at lower and upper supports correspond-
ing to first system of Hp, Rp, Ry coordinates;

My, My, M, = moments in the direction of the x, y and z axes,
respectively, corresponding to the first system of
coordinates (Fig. 2.2);

My, My1, M;1 = moments at upper and lower supports, whose vec-
tors are parallel to the x, y and z;

My, My, My = axes of the first system of coordinates;

N1, Q1, N2, Q2 = reactions at upper and lower supports correspond-

ing to the second system of coordinates (Fig. 2.3);
Mx1, My, Mz, moments at upper and lower supports, whose vec-
Mx2, Mys, Mzz tors are parallel to the X, Y and Z axes of the
second system of coordinates;

P, Py = unit dead loads of flight and landing, respectively;
Py, P3, Ps = unit imposed loads on lower flight, upper flight
and landing, respectively;

E, G = moduli of elasticity and rigidity, respectively;

L, I = moments of inertia abut 1-1 and 2-2 axes, respec-
tively;

I, = polar moment of inertia;

Ki...Kj5 = constants;

P = Pay2) + Pays).

A reference is made to Figure 2.2, the equilibrium of the entire stair can
be categorised as

a) Y Fx=0=) Fy=0=) Fz

b) Ri=R, (2.40)
C) HD = HA; RD = _RA + B]PL] + L3B/P(4+5)

Q) Y Mx=0=) My=0=)» My
1
b) My =My —2H Hp + =B1PL? + L3B' Py, 5
&) My2=My1+ f(=Ra+BiLiPasn + 5 HiB Pays))
Mz: =Mz + fHyu

In this case L; and H; are the same as Ly and Hj, respectively. Where
Ly and H; are different from L, and Hj, respectively, a reference is
made to case studies in Section 2.4. The same is true if supports are
flexible.

The strain energy in AB and DE stairs are now computed.
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My R
)
H2 D\ E
- - Bl
N
N
N
N i=2s
J
) . . + :
N
N
N
My R
L

PLAN

AN Ly, L

My R, SECTION ABC

Figure 2.2. Stress resultants in y-z coordinates (Taleb 1964).
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Vs
Mx2 Rz j
y
D4 ) E F
/
/]
/]
7/
/1
/]
Va
4 . 1 c
/
; |
My R y
/]
A
z y
My, 0

Figure 2.3. Stress resultants in x, y, z coordinates.
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Let Uap) be the strain energy in staircase AB.

Then
Us sy = XAB 4. / z1coso — Myjsina — Ryx
(AB) f 2E] + 2EL dx
0 0
(Mz; sina — My cos a)?
dx 2.42
* 2GIp (2.42)
0
where,
2ENL I,
Glp = 2.43
d h+1Dh ( )
and

Mxapy = Mx1 + EBl P(1+2)x2 cos?a + Haxsina — Rqx cosa

Let Upg be the strain energy in staircase DE.
Similarly

L L
M2 Mz, cosa — Mys sing — Rjx)2
U(AB)=f XDde+/( z2 Y2 l)dx
0

2EL 2ED
0
L

N (Mzzsina—Myzcosa)zdx (2.44)
2GIp
0

where,

MxpEg)y = Mx2 + 7 B Py3yx?cos’a+ Hpxsina

2 (2.45)
— Rpxcosa
Total strain energy of the entire staircase:
U=Usp+Upg (2.46)

Equations (2.40) and (2.41) indicate relevant moments and reactions at
the support and may be expressed in terms of those at A which are
taken as redundants. Six equations are written for the least work when
no deflections or rotations at supports occur.

oU aUu alu
— =0, — =0, — =0 (2.47)
J0H; 0RA R,
For example,
oU oU aU

IMx1 - IMy T Mz =
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L L
U M M
/M(XSlna)dx+/(_(£D_E_))x
Fr El EL
0
F M
4 | BZREY L (Myysina — Rix)(f cosa) dx

El

' L
M -M
+/‘< Zzsma chosa)(fsina)dx:O
0

(—2H; + xsina) dx

(2.48)

The above equations are solved for the unknowns Hu4, R4, Ry, Mx1,

My1, and Mz.

The solutions are given below for unsymmetrical loading:

Kis
Ry=——=
A Ko
K4
Hy=——2
A X
Kis
R = —3K7(K10 + ng ) = —3K7(K10 — fRa)
1/2L1K14 LiKjs
My = - - K
X1 2( Ka Ko + K13
1
= 5(—H1HA + L1Ras + K13)
1/ fK3Kis fKis
My = —=| — K
Y1 2( K2 Ka + Ko + K10
1/ fK3Hy
= —| — R K
2( X, + fRa+ 10)
K _ HiKio  2L%K7Kj0
217 9K, 2Ly L
H{K
=—fHA+K8RA— 21 >
2 2L, L“K7K10/L1
where,
_ L _ EL 1_
= -, = - = I, :B—B
m . n Gl 2(m+) f 1

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)
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and
K =ﬁcos2a+ﬁsin2a, K> — msin® a + 71 cos®
2HZ 1| K?
KZ_—_Z,K:-—I—ZK__}_
3= (m —n)sin“a 4 3 +2f<1 K,
Ks = 4K L? — 3mL?, Ke¢=4K3L? —3mL Hy;
L1K3 — Hi K4 f 2
Ky=—223 "2 e L (H +4L%K
7 X 8 2L1( 1+ 7)
L2 2
Ko=—1+ !

6 2Li(L1K2 — H1K3 — K¢K7)

1
Kio = f(Bl PayoL1 + ELaB'P(4+5)>

BiL*H; 5Ly 3H;
Kn == ! — L3B'Puys)Hy <— + -—)
(Pa+2) — TPa+3)) 6 4

B L3 B\PL} ,
Ki2 = ——{ Pa+3 — Pa+d = + L3B Pays)Li

X L + Ls fK2K

6 ] 2K10

BL? 1.
Ki3= < Pa+3) = Pa+2) + 5138 Pays) (L1 +L3)
K14 = K11 + Hi K13
Kis = K12 + leO(Lle + H1K3 + K¢K7)

2L1K3 2L

Ny =Rasina+ HacosaQ1 = Racosa + Hy sina (2.55)
My1 = Myjcosa+ My sina, Mz = My coso+ My sina (2.56)
Myx1 = My (2.57)
and
N> = Hpcosa + Rpsina, @2 = Rpcosa — Hpsina (2.58)
My; = My cosa + My sina (2.59)
Mz, = My cosa + My sina (2.60)
My, = Myx> (2.61)

A special case is made for Symmetrical Loading. The equations are
produced when:

a) the flights only are loaded;

b) the landing is loaded;

¢) both flights and landing are loaded.

P, =P; or Puyz = Puy3), P =2Pu4y
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The above equations are resolved and the following expressions are
obtained:

Ri=Ry=0

1. (2.62)
Rp=Rp = B1L1Pa+2) + §L3B Pgys)

mHil1 1 1
HA = HD = K—4[ZBlL%P(1+2) + L3B,P(4+5) <§L1 + ZHI)] (2623)
1 1,
My = Mx; = 3 —2H1Hp + L1Ra + §L3B Pysy (L1 + Hy)
K3Ha
My; = My, = —
Y1 Y2 f 5K,

1
Mz1 =Mz, = EfHA

Note: where flexible supports are included at D, the spring constants of
Ky, K, and Ky are simulated in the above equations thus modifying
Hp, Mpp etc. The whole equation on the lines suggested in Section 2.4
can be rewritten and then finally solved for various unknowns.

EXAMPLE 2.2

Analyse a staircase with the following dimensions and parameters for loading placed
unsymmetrically and symmetrically:

H =183 m, L =122m, By =122m, B'=274m
D = 140 mm, m = 0.013, n =0.507
f=152m, cosa = 0.848, sina = 0.533; L=34m
Loads: Py = Py = 4.8 kN/m?, P, = Ps = 4.8 kN/m?, P;=0
Unsymmetrical P42y = 9.6 kN/m?, P13 = 4.8 kKN/m?
Puarsy = 9.6 kN/m?, P = 1.4 kN/m?
Symmetrical Pl =Py =Py =Py = Ps = 4.8 kN/m?
Pa42) = P43) = Pass) = 9.6 KN/m?
SOLUTION

Staircase under unsymmetrical and symmetrical loads
General constants not dependent on loads:

K1 =0.1535, K,=03667, K3=-00162, K4=22514
Ks =4 x 0.1535 x 3.4> — 3 x 0.013 x 32 = 7.0984 — 0.351 = 6.7474
Ko =4 x 0.1535 x 3.42 — 3 x 0.013 x 3 x 1.83 = 7.09784 — 0.21411

= 6.8837

_ 3x (—0.0162) — 1.83 x 0.1535 _ —0.0486 — 0.2809
N 6.7474 - 6.7474

52 1.52
Kg = m[l.83 +4 x 3.42 x (—0.0488)] = T(1'83 — 2.256512)

K5

= 0.0488

= 0.4636
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32 1.522
Kg = <+ mn x 0.3667 — 1.83 x (—0.0162) — 6.8837(—0.0488)]

= 1.5 4+ 0.3850667[1.100 + 0.029646 + 0.3359246] = 2.0644

Unsymmetrical placed loads:

1
K10=152(122x9.6 x3+ 51.22 x 2.74 x 9.6)
= 1.52 x (35.136 + 16.04544) = 77.7958

1.83
K= (1.22 x 32 x 7)(9.6 ~T7x48)—122x%x274%x9.6

x1.83(5x 2 +3x L83 Z 2475110
6 4
3\? 33
K2 = |[1.22 x (5) (48-9.6)~ 122 x 48 x == +1.22x 274 x 9.6

x 3(% + %) — 1.52 x 0.3667 x 77.7958 = 1.1973

2
K13 =122 x 32(4.8 —-9.6)+ % x 1.22 x 2.74 x 9.6 x 4.22

= 41.3595
K14 = —247.5110 + 1.83 x 41.3598 = 171.8226

1 .
Kis=1-1973 x 2 x 3 x 41.3595 + (1.52 x L 76958)

% [3(0.3667) + 1.83(—0.0162) + 6.8837(—0.0488)]

= —62.03925 4 15.673603 = —46.3656
46.3656 171.8226

= . ———— X 0.848 = 76.
1= S oeaa x 0.533 + 22514 x 0.848 = 76.6888
46.3656 171.8226
= 848 — ———— % 0.533 = —-21.631
Y x 0.848 35514 x 0.533 21.6319

Substituting into Equations (2.49) to (2.54)

Ra = 224596, Hj = 76.3181 unitskN

Ry = —3(—0.0488)(77.7958 — 1.52 x 22.4596) = 6.3914 kN
1

My = 5(—2 x 1.83 x 76.3181 + 3 x 22.4596 + 41.3598)

= —B85.29281 kNm
76.3181
0.3667

1
=-3 <13083.943 — 34.138592 + 77.7958)) = —6563.8 kNm

— 1.52 x 22.4596 + 77.7958

1
My = —-5(1.52 x 41.3598 x

22.4596
6

— 2 x 3.4%(—0.0488)

1
M, = -3 X 1.52 x 76.3181 + (—0.4636)

77.7958 77.7958
6

3
= —~58.001756 — 1.7353784 — 23.727719 + 29.257859

= 54.2070 kN m
My, = —6563.8 x 0.848 + 54.2070 x 0.533 = —5537.210 kN m
Mz = 54.2070 x 0.848 + 6563.8 x 0.533 = 35.444729 kN m
Mx1 = My =—85.2928 KkNm

—-1.83 x
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1
My; =6563.8 —2 x 1.83 x 76.3181 x 2 x 1.22 x 4.8 x 32

1
+1.22x274 x 9.6(3 +5 1.22)
= 6563.8 — 279.32425 + 26.352 + 115.84808 = 6426.676 kNm

My = —6563.8 + 1.52(22.4596 +1.22x3x9.6

+ % x 1.83 x 2.74 x 9.6)

= —6563.8 + 1.52(—22.4596 + 35.136 + 24.06816)
= —6563.8 + 55.851731 = 6507.9483 kNm
My = Mz) x 0.848 — Mz, x 0.533
= 170.2105 x 0.848 + 6507.9483 x 0.533 = 3483.1214 kNm

My = Myj x 0.848 — M5 x 0.533 = —6507.9483 x 0.848
- 170.2105 x 0.533 = —5609.4624 kN m

Mz = M x 0.848 — Myp x 0.533 = 170.2105 x 0.848
+ 6507.9483 x 0.533 = 3483.1214 kNm

Mx> = My = 6426.676 kN m

Rp = -22.4596 +1.22 x 48 x3+1.22x2.74 x 9.6
= —22.4596 4+ 17.568 + 32.09088 = 27.19928 ~ 27.2 kN

Hp = Hp = 763181 kN ~ 76.32 kN

2.6 METHOD OF SPACE INTERSECTIONS OF PLATES

2.6.1 Liebenberg method (May 1960)

This method has been developed using the extensional (membrane or
planar) stiffness produced by the interaction of the stair flights and land-
ings. The landings, columns, walls, beams and floor slabs are ‘points’ or
‘lines’ of intersection and they are treated as support to the ‘secondary
load carrying system’ of the bending stresses in the slab elements. The
extensional or membrane forces at the intersection points provide reac-
tions which balance the shear forces in the slab elements.

The analytical procedure is summarised below and in Table 2.2.

a) First the conditions for a proper function of the primary system
must exist. The effective supports are provided to the secondary bending
system and local direct forces due to applied loading when inclined to
the axis of the stair.

b) A provision of imaginary external restraints at supports thus pre-
venting displacements and rotations.

¢) Calculations of the resultant reactions acting on the imaginary sup-
ports.
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d) Determination of the magnitude of the forces in the primary system
and the actual stresses due to the combined effect of the forces on both

primary and secondary systems.

Notation for the analysis

RBcp = the resultant reaction due to the secondary bending force
system and local direct forces acting at the intersection line

CD at an angle a with the vertical;

Rrcp = the reaction at CD due to the bending forces in the flight

acting at right angles to the flight;

Ricp = thereaction at CD due to the bending forces in the landing

acting at right angles to the landing;

Drcp = the reaction at C D due to the local direct forces in the flight

acting in the plane of the flight;

REpcp = the resultant extensional force in the flight at CD due to
the reaction R B¢ p but not including the effect on the local

direct forces in the flight;

RE'Y., = the resultant extensional force in the flight at C D due to the
reaction RBc¢p and including the effect of the local direct

forces in the flight;

RE;cp = the resultant extensional force in the landing at C D;

Egc = the extensional force per unit length in the flight at C not

including the local direct force;

Fe = the extensional force per unit length in the flight at C in-

cluding the local direct force;

Erc = the extensional force per unit length in the landing at C;
Vebp = the shear force acting along the intersection line CD due
to the primary force system but not including the effect of
local direct forces;
D = the shear force acting along the intersection line C D due to

the primary force system including the effect of local direct

forces

Table 2.2. Analysis of stairs.

Case I: stairs as a triangular arch

The stair is considered as a triangular arch. An applied line or knife edge loading is acting at the steps (Figs 2.4(a) to

(h)). The top or bottom slabs are restrained against horizontal movements.

Case II: cantilever landing slabs with single flights

A reference is made to Figures 2.4(a) and (b). A cantilever landing slab with a single flight rigidly supported at the

lower end.

REpcp = RErcp + Drcp

where, Dpcp is the local extension or membrane force and

cos P
REfFcp = —Rpcp——
sina

RE;cp = resultant extension or membrane force = —Rpcp(sinp + cosp - cot o)

(a)

(b

©
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Case I
Knife edge loading @/unit length

Figure 2.4(a). Staircase
with parameters.

Mg

Figure 2.4(b). Bending
moments.

e
L +

[ 0By -0~ (4~ M) 559
1

[~ o - a9
Figure 2.4(c). Shear forces. 1
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Table 2.2 (cont.).

The force distribution is taken as linear, hence

6
Erc = —[RBCD cosp <1 + —e)] per unit width

sia

and

Erc = [RBCD

cos B
sina

B

B

2
(1 + 6—6)] + [M] per unit width

B2

where € is the eccentricity of Dpcp

Epcp = — [RBCD

Efcp = —[RBCD

B

RE
Eic= SoLeb [1 +

cos B 6e S
Bsn® (1 - E)] per unit width

_ g
cosp (1 - 9‘:)] + (M> per unit width

Bsina

B B2

be it width
| per unit wi

RE 6
E;p= %[1 - Ee] per unit width
Considering the equilibrium of the flight
cos
REFaB = REfFcp = RBCD.—rB
sina

. cosa .
RE;‘AB = RE;«"CD = —PFsin® — RBCDR + Drcp — Prsina

(where Pr is the total load on the flight)

3 1 cosp 3
-REFCD—e] = [RBC P2

1
Vag = Vep = —[ 2 Dina 2°
JHE+LY JHE+ LY

1 3
[RBCD cosp e — Dpcpe + Prsinae” 4+ Dpape”

sina 2

Vap=Vep =
JHE+LY

where e” is the eccentricity of the resultant of Pr and ¢’ is the eccentricity of the local direct force Dras

RE 3

Epa= %(1 - §e> per unit width
D 6 '

Epys=—Epa+ ZAD (1 - ; ) per unit width

RE
Erpp = %(1 + %e) per unit width

D 6 i

Epp = Erp+ I;Ab (1 - ; ) per unit width

Considering the equilibrium of the landing:

VrE = —RELcD

V. 6 B L .
ELr = D _ —2[—RELCD (— +e +c) - Vep - —L] per unit width
Ly Ly 2 2
\% 6 B L o
ELE=%=-7|:—RELCD<—+8+C>+VCD'—L] per unit width
L Ly 2 2

)

G

€)

®

(@

0

®

®

¢49)

M

(m)

)

(0)

)

@

(n)

)
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Case I (cont.)

"z—bl—" sin®
b’ 3
Li-X
Figure 2.4(d). Local direct @B 5in@®
forces. L
Ricp
B Dgcp
o
Rgep |
Rrep
Figure 2.4(e). Force
diagram.
B
RE gr
e e

Figure 2.4(f). Resultant
extensional forces.
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Table 2.2 (cont.).

When one edge of the flight (B D) is built into a wall an additional resistance in the form of a shear force Vpp acts along
the edge of the flight. Due to this additional support, the slab is treated as if it is lying in three supports when bending
forces are evaluated. The equilibrium of the flight gives:

REf p = REpcp — Prsina+ Vg, )
ie.

Vip — REps5 = —RERcp + Prsina (W)
ie.

Vip = Ks(—RE45 + Prsina) x)
and

—REgsp = (1 = Ks)(—REgpcp + Prsina) )

where K cannot be determined by simple methods.

Figure 2.4(g). Extensional
forces.

Figure 2.4(h). Reaction
distribution.
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Figure 2.4i(a). Cantilever
landing slab with single
flight.

Case Il s

Figure 2.4i(b). Extensional
forces.
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Table 2.2 (cont.).

Case III: scissors type staircases
Here two similar staircases are joined to form ‘scissors’ and are supported on the main landing as shown in Figures 2.4j(a)
and j(b). It becomes a statically intermediate structure. The system requires an additional force ‘H’ acting as shown.

(@

— RE} gy cos @y cosay — (REFcpy cos ©1 cos ay)
= Rpgn sinp ®)
(REgy cos @y sinay — (REFcp cos O - sinay) = Rpgy cos B ©

or
H = RE} gy (sin®; — cos Oz cosap) — REfcp(sin ©1 + cos O cos ;) = RpgH cosp

If bending of the landing dominates, the displacement of the resultant X 4p and X;x will depend on the edges of the
landings in the direction coinciding with the planes of the flights.
If the landings and flights are equal
K

Xjk=Xap= = d

If the upper landing has negligible stiffness K compared with the lower landing
Xik=0, Xup=K ©

Case IV: membrane type staircase

The extensional or membrane forces of a uniformly distributed load can be calculated in various planes with B and
By values small (Figs 2.4k(a) to k(d)). w; and w, should be the uniform load per unit horizontal area of the stairs. The
following computational values can be obtained in a generalised manner:

C 1
my=mj = [kl(,olLlB +k2w2LL(B+5)]E =m (a)
mB
REpcp = —REfgH = ——— ()
sina

mB w1 LiBsina
mB , @iLiBsina ©

RE] = —RE|} =—
FCD FGH sina 2

The magnitude of the extensional forces are as follows:

REfrcD 3(B+0C)
Ers = 1-—- d
FA B [ B (d)
B+C
= _—,m |:1 — —3( + )] per unit width ©
sino B
E}"A = Efs — o.)lLl%- per unit width (3]
REFcD 3(B+0)
Epp = 1
Fb B [ + 3
3(B+C
= —.L [1 + g] per unit width (®
sina B
Erp=EFp — wlng-%g per unit width (h)
, sina L :
Erc = Eps and EFC=EFC+‘*’1L1T per unit width @
, sina L .
Erp =Erp and Epp = Epp+ w1L1—— per unit width 0

2
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Figure 2.4 j(a). Floor slab
restrained against
horizontal movement.

Figure 2.4 j(b). Boundary
forces.
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Case IV
M, acting at an angle B;

@ per unit
horizontal

Figure 2.4k(a). Membrane

forces.

reaction along CH

due to bending forces
mo3 LHHHLH GHHHHHL
m(1—3(B—Z€))IlD\ /(Jl

m (1 + 3(B—Z_Q)) - vertical components

|
D

of extensional forces
Figure 2.4k(b). Forces
acting in vertical plane.
\/\'— A 3dm(b+o)

i | |
Figure 2.4 k(c). Shear | |
forces acting in vertical [ | - —3/4m (B +c)
plane.

A 1”2mB(B+c)

Figure 2.4k(d). Bending
forces acting in vertical
plane.

ic D' G H|



Method of space intersections of plates 65

Case V
A\
RBCD
FCD
"H" )
cm@ /)
H
RELG RELCD
X X
F GH' CD
———»————————-»-————-»
\ )\ \
\, i Y

N

Figure 2.41(a). A staircase
with support at mid

landing.
m 3(B+0C) N
=1 - — th
Eic o [ 3 ] per unit wid &)
m 3(B+0O) ..
=1l 4 — h
ELp —_— [ += ] per unit widt o
Eig=-ErLp, Erg=—Erc per unit width (m)
Erc = —Epp, Erpy =—Epc per unit width (n)
Els = Erg — oL 3’-2‘-3 per unit width ©)
E}’H = Efy — 0)1L1¥ per unit width @
Erj=—Erp, Efy=—Era per unit width @
Ep;=Epy + (1)1L1——i—g per unit width (x)

sina
EFK = Erk +0~)1L1“§“

The unbalanced resultants of the primary extensional forces along CH are in this case in a vertical plane.
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Table 2.2 (cont.).

Case V: a staircase with support at mid landing

Case V is similar to Case IV except the end of the intermediate landing is restrained horizontally and vertically as
shown in Figure 2.41(a).

Considering the equilibrium of the intermediate landing:

RpcpcosP = ~REpcp - cos O sinag + REFGH - cos ©7 sinay ()
REiGH + Rpcpsinp =—~RErcp
where,
RE; Gy = RLFGH cos ®7 sinay
RE;cp = RLpcp cos @1 sina)
Ve = Voguy + Vep = REpgy sin®y — REpcp sin ©®

REi6H = X¢y — RELcpXcp = VFE - a

RErgycos®;sinay - Xgy + REFcp cos ®1sinay - Xcp

3B

— 4+ C—-e—Xgy = tan @) ®)
2 COS 0t

B L

—+e—Xcp = tan ©

2 cos o]

The internal extensional forces can consequently be determined.

2.6.2 Siev’s method (June 1962, October 1983)

Plate analysis of multi-flight staircases

The space interaction of plates forms the basic theory of analysing stair-
cases while assuming they are statically deteminate. The plates are divid-
ed into various horizontal shapes looking like trusses placed horizontally.
The analysis is similar to that used in hipped plates. The line of the in-
tersection between the flights and the landing is considered as a support
and the load acting on it is resolved into forces in planes of the plates.
Figures 2.5 and 2.8 show the various effects under symmetrical and
antisymmetrical loadings. This method is very similar to Liebenberg’s.
Here torsional moments are then calculated as those moments causing
compatibility in deformation.

Notation for the analysis

A = cross-sectional area of flight;
B, C, Li, L = dimensions of stairs;

C = torsional rigidity;

D = overall depth of slab;

E = Young’s modulus of elasticity;
f =  stresses;

G = modulus of elasticity in shear;
1 = moments of inertia;

Iy = moment of inertia of beam 3-10;
M = moment;

P = load at a point;
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a) b)

= i z

{2 l{ = upper ﬂlght 4
L =lower flight
3

Z
Y

X
y -

S

Notation of axis and forces

c) d)
Axonometric view of equilibrium of landing
) 8 7_6 5 b j
3 AT Zy| {2z 1z,
B C_ B
10 3 I T T 1
{ 9 4 |
Xio  Xoy |Xa X3
B G B

]
! H ! Equilibrium of beam in vertical plane

Equilibrium of landing in horizontal plane

Figure 2.5. Equilibrium of space truss under symmetric load (Siev A. June 1962).
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b)
z
Yy
x
]
y
X
y e
AL
Notation of axis and forces

Notation of axis and forces

) _ 9 8 7 6 5
X}
3
* 10 3
} 9 |4 4
X Xy lilx b'e
OBl B

Equilibrium of beam 3-10

Figure 2.6. Equilibrium of space truss couple (Siev A. June 1962).
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R = force (resultant);

R’ = force resisted by primary stresses;

R" = force resisted by secondary stresses;

w = displacement normal to plate surface;

w = load W, Wp = live load and dead load,
respectively;

X, Y Z forces in x, y, z directions, respectively;

X, Y Z = forces in X, y, Z directions, respectively;

Greek

a = angle of slope of flight;

) = deflection of a point, vertical;

€ = elongation of respective fibre; and

T = torsional shear stresses at the flights.

Subscripts

u, 1 = upper flight, lower flight, respectively;

s, a = symmetric and antisymmetric, respectively;

X, ¥, 2

xX,y,2 = indicate direction of moment, stress and so forth;

1,2, 3 etc. = indicate point of moment, stress and so forth.

Basic analysis

Table 2.3 summarises the basic equations. The elements 1, 3, 5; 2, 4, 6;
7,9, 11; 8, 10, 12 and 3, 4, 9, 10 each represent a single part with pin
joints and are in vertical planes. Another element: a diagonal 1-4 dashed
line is added to offer resistance to any horizontal forces. The unknown
forces are represented by x. The forces X and Z acting on the landing
are the horizontal and vertical components of X such that

X =Xcosa and Z =Xxsina
R” (resistance to an additional load) = R — R’ (2.63)
where R’ is force (arbitrary) resisted by arbitrary load.

Moment in slab: moment

1. max. cantilever moment = 9.763 kN'm

2. min. cantilever moment = 4.882 kN'm

3. max. negative moment at floor levels (lines 1-2 and 11-12)
4. negative moments at floor levels for full load

9.763
=12.24 4 = —7.3585 kNm

5. max. positive moment = 5.02 kN m

Slab Reaction 3, 4 or 9, 10
BR =33.75 kN
_ 33.75

—— = 27.664 kN
K 1.22 66
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Table 2.3. Basic analysis — Summary of equations.

Couple My = P(2B + C) (@
— - RC -
Example X3 = , Xi0-12=-— — =-X b
xampe 13 4Bsina 10-12 4B sina 13 ®)
R(C +2B) —
—_———— = +Xg.
4B sina +Xo-11 ©
_ — R
XorL=Xou = — (@
2sina
R=R +R" where, R" <« R, R=FR (e)
— M — —
X=-——2_ X=Xcosa, Z=Xsina 6
2B sina
R’ R B+C
Fzy=—-F5, = = 14+3
29 247 Dsina Dsina( + B ) ®
R B+C
Fs, = 1-3 h
z3 Dfsinoc( B ) ®)

M = maximum mid-span primary negative bending moment for beam 3-10

B+C
= —BR -l
2
6R'L(B+C) .
W WG =W T W = e e ®
R'B¥B + () BMy
¥ =8 = ———(C +0.7B) - 3C +2B j
3 4 4E1, (o ) 6EIB( +2B) ()]
MyxB . .
wy' =wy = C);(CI = (wf — w}y) + Wy — wy) + wj — wy — w§ = Eq. (i)/ cosa
D} B+C\?
R = —2—?—2-[1 +3(55) ]R’ ®
4L% sin® o B
(B+C) BXC(B+0)
GLEDygBcosa 4EIpcosa
AR '
My =R\ L  DLuna _ BC ®
GC  EB’Dy 2Eljcosta
. . . . MyH1
wy —wy = wip—wy’ = ~12gp, ;e (m)
under asymmetrical loading
My = B(B+ O)R,, (n)
M. _BBr0, o
Za ™ 2sina 2 sina
o GCB(B+C) , P
Xe ™ Elz(3tan?a) ¢
n_ GC 1 , @

¢ El;4tan’a °
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2bR’

Stresses strains and deflections

(¢
~—
m
(N

0
—{F—
g = T\ SZ10
\
N
4 — “ ‘\
2 = - Ce
F Y
g L RO A
f—
€40
Strains in upper flight
2 10 8
0
i 4
3 5
Deformation of landing

Williot diagram of displacements due to strains
in plates.

Figure 2.7. Stresses and displacements resulting from symmetrical loading due to strain in plates (Siev A. June 1962).



72 Structural analysis of staircases: Classical methods

Displacement due to bending on beam 3-10

b) "
£
IEEERISINEEN Load on beam 3-10
10 9 4 3
R (1+35L19)
Véﬂjﬂ__mhw B, Reaction from flights on beam 3-10
' Bi+¢
r(1-38L%9)
B By
3R/ 2LEE
By Resultant of forces on beam
B
R+
1471 Bending moment for beam (as if statically determinate)
0
:[83”— 8i-8{p—8y' Deflection of beam
Loading and deflection of beam 3-10. Note: B1+ C=L3
<)

U

X

Positive moment distribution on beam due to torsional restraint

10 3
Williot diagram

Figure 2.8. Displacement resulting from symmetrical loading due to bending of beam 3-10 (Siev A. June 1962).
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EXAMPLE 2.3

Using the space interaction of plates for a multi-flight staircase and the following
parameters, calculate moments, reactions and relevant stresses for a reinforced concrete
staircase under both symmetrical and asymmetrical loads:

Li=29m, H =H,=183m
L=3414m
B=122m, C=0.3048
Dy =114 mm for flights
Dy =203 mm for beam
Wd = dead load on horizontal projection = 4.8 kN/m?
WL = imposed load = 4.8 kN/m?
G =04E
Assume the ends of the flights are completely fixed.

SOLUTION
A multi-flight staircase in concrete

I, =151.7 x 105 mm*, I, = 17,230 x 10° mm* Grade 30 concrete
BD? ,_ 063Dy
3 3
Ip = 426.0 x 10° mm*

C =

) = 570 x 10° mm*

Beam 3-10 cross section 610 x 203

Equation (k) Table 2.3 for symmetrical loads gives
R” = 0.006363R’ kN/m
The ratio between the secondary and the entire resistance:
R//
R/ + R//
M = secondary negative moments at the floor = 0.0063R; x L1 =
0.0063 x 0.192 x 2.9 = 0.035 kN/m
R; = 0.192 kN/m is acting on the primary system.
Table 2.3 Equations (g) and (h) is invoked replacing R’ by R;
fz9 = — fz9 = 2151 kN/m?
fz3 = — fz10 = 1241 kKN/m?
With these stresses there will be an increase in reinforcement ration in

the tension zone. In order that the torsional moment can be computed,
w3 = w4, the relative displacements must be known.

E(w} — w}) = 50.84 kN/m
G(wg - wZ/) = O.486Mx’s kNm
EwY — wl) = —0.000641 kN/m

= 0.0063
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a)

V1

Strains in the upper flight
(concave deformation)

Deformation (L flight)

N

Williot diagram

4

Strains in the upper flight
(convex deformation)

d)

i
\/

Deformed flight

Stresses

g

\:%\
—

|

Deformation of beam

Figure 2.9. Stresses and displacements resulting from antisymmetrical loading.
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Upper flight

114 mm —
N — - T :1:203 mm
Lower flight

-

Width of the beam 3.10

Figure 2.10. Typical
cross-section through
landing with variable depth.

substituting into Equation (j) Table 2.3
M, =2.4521 kNm, m, =2.096 kNm

The deflection of the beam 3-10 contributes to the torque.

M
Torsional shear stresses = 1t = 3 ;lzs = 395 kN/m? or
f
30m~
= %5 _ 395 kN/m?
D}

If Grade 30 i.e. 30 MN/m? or 30 x 10 kN/m? concrete is used (fou >
fl) stresses can be absorbed by the concrete easily. In this case no spe-
cial torsional reinforcement is needed. This is the reason why torsional
stresses are ignored in the Design Office Practice. This rigidity of the
beam 3-10 is increased by using sufficient quantities of steel in the com-
pressive zones, thus bringing about a reduction in the tensile stresses.
Using Equation (g) Table 2.3

M3 10=232kNm
The total primary moment = 25.65 kN m is adopted.

A symmetrical load
Using Equation (q) R, = 0.0052R,

The full load Ra can therefore be assumed to produce primary stresses
only (Eq. (e) Table 2.3).

Calculation of maximum stresses
Q) wg+1/2wp =4.8+2.4 ="T72kN/ m? entire structure symmetrically
loaded
(ii) one half of the structure with +1/2wy = 2.4 kN/m?
and the other half with —1/2w;, = —2.4 kN/m?
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Appropriate superposition gives the maximum stresses at each point.
The previous values are multiplied by the load ratio 7.2/9.6 = 0.75

Rs; = 0.145 kN/m, R, %0.05 kN/m
_ 2
Fz, ; = 1614 kN/m

— 2
Fz5 ;= 931.0 kN/m

Using Equation (o) Table 2.3

fz3, =421 KN/m? = — f,  under full load

—_ — 2
F3ma = 931421 = —510 kN/m

This value is 9% higher than stresses under full load on the entire stair-
case and is generally regarded as insignificant for practical purposes.

2.7 HELICAL STAIRS

2.7.1 Introduction

Recently, curved staircases have been constructed, supported only at the
top and bottom. Although they are circular in plan projections, in ele-
vation their description is helicoidal. Various analyses are available to
solve such a complicated problem. From each analysis, torsional mo-
ments, bending moments, shear forces and axial thrusts are resulted.
The geometry of each helical staircase affects the application of load
and hence the results. This subject has been throughly reviewed in depth
by various reseachers. In this text, only significant analyses are given
which might assist researchers and practising engineers.

2.7.2 Morgan’s method (March 1960)

Introduction to the method

This is one of the first methods produced for the helical stairs and is
based on freely supported flights. A uniform load is assumed on a divided
structure. Various moments including torsional moments are computed
using a carefully cosidered geometry. The analysis also gives shears and
axial thrusts.

Notation for the analysis

ai, a = coefficients for redundant moment and force at midspan,
respectively;

as = coefficient for vertical moment at fixed end;

B = width of the stair section;

E, G = moduli of elasticity of concrete in tension and com-
pression and in shear, respectively;

H horizontal redundant force at midspan;

total depth of stair section;



Helical stairs 77

L, I = second moments of area of effective section of stair
about horizontal axis = 1 /ZBD} and about axis nor-

mal to slope = 1/2Dy B2, respectively;

J = polar second moment of area of effective section of
stair = KB D; (for values of B greater than Dy);

K, = torsional constant;

= 1/3-3.36Df/16B[1 —(Df/B)4/12];

M, =M, = redundant moment acting in a tangential plane at mid-
span;

M,s, M,y = lateral moment (about axis normal to slope of stair) and
vertical moment (about horizontal axis), respectively;

Py = thrust normal to tangent;

R;, R, = internal and external radi of the stair, respectively;

Ry = radius of centre-line of load;

R, = radius of centre-line of steps = 1/2(R, + R;);

Vur, Vi = shearing force across section of stairs and radial hori-
zontal shearing force, respectively;

Ty = torsional moment;

w = total loading per unit projected length of centre-line of
loads;

Greek

B = total area subtended by helix as seen in plan;

® = angle of subtended in plan measured from mid-point
of stair;

¢ = slope made by tangent to helix centre-line with respect

to horizontal plane.

Basic analysis for a freely supported helical stair

This analysis is based on a freely supported flight. Figure 2.11 shows
a typical helical staircase with various moments and reactions labelled
on it. At the mid-point the angle ® is positive when measured in a
clockwise direction and is negative in an anti-clockwise direction. The
strain energy concept again is applied. The loading is assumed to be
symmetrical and hence the structure of the stair is divided at the centre.

The angle ¢ is constant.

tan ¢ = Hy/Raf

where, H; = effective height of the stair; p = effective angle through
which it turns; y = cut off angle is taken to be 30 deg.

At any point O in the flight, Morgan developed the following equation:
Vertical moment:

Bsi in®
My = Myo = wRi Ry~ + wR2(1 + cos o) — HHIS’SH; (2.64)
Lateral moment:
®
M,, = [leRz(cosa — @) — HH o — yR? sincx] ing ) s

— HRysin®cos ¢
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M,
M, \O
T
p, Hi8
¢ B
Y|
R0
¥=130°
Figure 2.11. Helical stairs T'= centroid of loads
(Morgan’s method).

Torsion:
T, =|wR Ry(cosa — ®) — HH 8,cos® — wR?sina | cos ¢

o= 1482 1 1 (2.66)

+ HR, sin®sind

Thrust normal to the tangent:
P,, = —Hsin®cosd —wROsind (2.67)
Shearing force across the waist of the stairs:
Vo = WR1®cosd — Hsin®sind (2.68)
Radial horizontal shearing force:
Vo = Hcos® (2.69)
The vertical reactions at the simple support are:
wR1B/2 (2.70a)
X = 2Ry sinB/2B (2.70b)
x = Ry sin(B/2 — 90°) (2.70¢)
Then
HHy =w(X +x) and My, = HR;siny 2.7
where,

a=0—A, ¥=0+p/2
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EXAMPLE 24

Calculate various parameters for a freely supported helical stair using the following
data:

B =300°

R; = internal radius = 0.195 m, width = 1.22 m

Ry=1524m, H =32m

2.135% — 0.915°

R; for the axis of the helix = 21352 — 09152

2

- = 1.603
X 3 m
SOLUTION F
Reely supported helical stair

reactions at the end of flight = 61.38 kN
H =64.45 kN, Myop at O =47.6 kNm

Substituting these values in Equations (2.64) to (2.69) various results are tabulated in
Table 2.4,

Basic analysis of a stair flight with fixed ends

Again Morgan (March 1960) adopted the Strain Energy concept in deriving various
expressions for a helical staircase flight with the far ends fixed. The origin is kept at
C as shown in Figure 2.12. Bending moments to the right of this point are assumed to
be positive when acting in an anti-clockwise direction when viewed along their axes
towards point O. The reverse of this is treated as negative. If M), is the bending moment
acting in the tangential plane at C, the values of M,r and M,s and Ty are computed

as:
M,f = M cos® + HR,©®sin®tan$ — wR?(1 — cos ©) (2.72)
Mps = (M,', sin® — HR;®cosOtand — wR% sin® —wR Ry®)sind
— HR; sin®cos ¢ 2.73)
Ty =(M,sin® — HR,®cos O tan¢ + wa sin® — wR1R,®) cos ¢
+ HRysin®singd 2.74)
U
am = °
o AM, M, M, M, 3T¢ T
rf rf nf nf f S
- . oy L LR de 2.7
/(AM En, T oM EL M c1> 2¢ @75)
0
oU
am =0
Table 2.4. Summary of results.
Parameters Degrees (©)
—-15° —-120° -90° —-60° -=30° O° 30° 60° 90° 120° 150°
M,, (kN m) 0 —80 -7230 -11.00 3560 77.85 50.0 —11.00 —72.30 —80.00 35.60
My (KN m) 155.68 280 347 n 187 0 —187.00 -311 —347 —-280 —155.68
T, (kN m) —55.60 -33.36 11.00 3336 31.00 O —27.00 -38.00 —11.00 33.36 55.60
P (kKN) 5340 6672 7230 5120 3336 O -3336 —51.20 —72.30 —66.72 —53.40
Vo (kN) —4450 —29.00 —11.00 —6.67 -023 O 0.23 6.67 11.00 29.00 4450

Vio (kKN) —57.80 —33.36 0 3336 55.60 6230 33.36 5560 O —33.36 —57.80
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M, *Mv=M0
B
Y
H 4 Py
C My My
R M, 14
pr2 My
N 1. Y
7 e
H|
My b
Y1Y
A
A
Figure 2.12. A helical H H
staircase with fixed ends.
o M, M, M 3T T
rf My nf nf f f
= . e 4+ —— . — R, dO® 2.76
/(sH EL T H EL T 3H c1)2 (2.76)
The other values are:
Ppy = thrust = —H sin®cos ¢ — wROsin 2.77)
Vuy = shear force across the waist of the stairs
=wR1Ocosp — Hsin®sind (2.78)
Viy = radial horizontal shearing force = H cos ® 2.79)
From Equations (2.75) and (2.76)
GJ 1. ’ 2 2 =
T m+ > $in20(M;, + wRy) —wR{sin® — KHRytan¢
1
+ S[m(M, + wR}) + nwR R, + KHRy tan ]
GJ
+ HRysinpcosom|{1 — — |} =0 (2.80)
EL
GJ — s HRy @ @%sin20
E—11'|:an1 et K(M,/) + U)Rl) + ’—2' tancb(T - T -K
+ S[K(M, + wRD)] + wR; Ry (®% sin © + 2n)
HR, e} @%sin20 GJ
il —_— §— —
+— tan¢<3+ 7 +K)+( L
+x[m(M, + wR?) + nwR{ R, + KHR; tan ¢}
— GJ
K HR;ysi 1—- —
+ 2sm¢cos¢( Elz)
GJ?cot
+mHRycos? o tang + Z%®) ¢ .81)
El
where,
—  ©cos?® sin20 ® sin2@
K=—"— L o m=— — ,
4 8 2 4 (2.82)
- 20,67 .2
n=0cosO®—sin®, S=cos°O+ —sin“O
ElL
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EXAMPLE 2.5
Determine the values of M, M,r, Myys, Tr, Vus, H and P,s for © varying from O to
+120 deg, using the following data:

¢ = the angle of inclination of the helical stairs to the horizontal = 25 deg;

B = 240 deg;

B = 122 m;

D = thickness including tread and riser = 152 mm;

Ry = 1.603;

Ry = 1524 m;

R; = radius of the inside of the stairs = 0.915 m;

Hy =H; = effective height 3.2 m;

w = uniform distributed load = imposed load + dead load = 2.873 kN/m?+
3.59 kN/m? = 6.463 kN/m?;

G/E = 0429

SOLUTION

Analysis of a helical stairs with far ends fixed

Ri/Ry = 1.05;

B/D = 12.2 introducing data and these values
M} =-20kNm;
H =191 kN

The above equations are solved (© varying O to +120°) and the following table sum-
marises the results.

The overall impression from these examples is that boundary conditions play an
important role in the assessment of various moments and reactions.

Limiting criteria for the design ultimate torsional moment

Elastic theory, using gross concrete area of structures, often leads to uneconomical
design. Stairs in particular, when subjected to significant torsional moment, become
uneconomical unless the design ultimate torsional moment is limited to a maximum
value. It should be equal to 0.33 f, xzy/ 3 Nmm = T, where x and y are, respectively,
the shorter and longer dimensions and f; is the cylindrical compressive strength of
concrete. Generally f; = 0.87 fou = cubic strength of concrete. For a fixed ended stair
flights, while keeping the analysis given in Section 2.5 the value of T, is constant.
Substituting Ty from Equation (2.74) and expressing H in terms of M} and (Ty)e =
y) = T, the horizontal thrust H can be written as

H =% +0M, (2.83)
Table 2.5. Summary of results.
Parameters Degrees (®)

-~120° -90° 60° 30° 0° 30° 60° 90° 120°

M, (kNm) —6.50 0 1.50 -1.5 -2.30 0 1.50 —-1.50 —6.50
Mpus (KN m) 27.12 30.20 27.12 14.40 0 -1630 -27.12 -30.12 -27.12
Ty (kN m) —-2.10 —-2.20 -0.20 0.30 0 -0.30 -0.20 0 0
Py (KN) 26 25.30 19.30 11.00 0 -45 -1930 -2530 -—25.60
Vor (kN) —-17.00 -9.30 -4.50 —2.25 0 2.25 4.50 —-9.30 17.00
Vur (kN) —8.75 8.00 8.90 12.50 17.80 12.5 8.90 -2.25 —8.90

Note: These results can now be compared with Example 2.5 for the same input data up to 128. The results show that a

freely supported stair can produce results different from the fixed ended one. Where supports are semi-rigid, the average
results of the two are acceptable.
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where,
T,-c¢ R?siny; — wR({R
Q) A = 0 08 ¢(w 1SIHYI. w .1 2Y1) 2.84)
Ra(1 + vy cotyy) sin ¢y siny,
t
B A cotd

" Ry(1 +y; coty))

where, y; = a particular value of ® for Ty maximum; y, = a particular value of ®
for M,y = 0 point of inflection; w = design ultimate load per unit projected length of
the centre line of the load.

Table 2.5 gives other parameters given by Rangan et al. (1978) and Rajagopalan
(1973).

EXAMPLE 2.6
Assuming the following data, determine M/, and H and other parameters for the data
given in Example 2.5

R =1603m, Ry=1524m, R/Ry=1.05,
f{=20MN/m? orMpa, T,=6.31kNm
y1 = 2.36 radians = 0.38B, ¢ =25°, w = 6.463 kN/m?

SOLUTION

Torsional limitation for design ultimate load

Ny = 6.31 — 0.90631(6.463 x 1.1236 x 0.68 — 6.463 x 1.603 x 1.524 x 2.39)
= 1.524(1 + 2.39 x 1.07)0.4226 x 0.68

=23.13

2.1445
T 1.524(1 +2.39 x 1.07)
Equations for helical stairs based on Rajagopalan method

At © = y, the moment M,s is assumed zero. Substituting for H, at O from Equa-
tion (2.83), Equation (2.72) gives

1Y) = 0.3956

M - [wR?(1 — cos y,) — M Ray; tan b siny, |
! =

a
cos Y, — M Ryy,tan ¢ siny, @

To find y; and yTr is maximum by y, and substituting into Equation (2.74), the
following expression is developed.

M, cosy; + HyRytan ¢y, + wR1 Ry = 0 (b)
when M,r = 0; when © = y,, Equation (2.72) gives

0 — M}, cos y, + H, Ray, tan ¢ siny, — wR3(1 — cos y,)

or
M/ cos y5 + Hy Ryy, tan ¢ sin
weMo Y22 oRyys tan ¢ siny, ©
R{(1 —cosyy)
For optimum value of y,; yw/y;y, = 0 the following expression is developed
M} — HyRytan $[1 + y5 cot vy (1 — cos y1) + ya siny,] =0 (d)
substituting for Hy from Equation (2.83), Equation (d) can be written as
S
M = 1 )

VT M+
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where
1 .

¥= R—tan¢[1 + 5 cot yo(1 — cos y) + vz siny,] 3]
2

For values of A = 23.13 and A, = 0.3956 Equations (a) (Table 2.5) and (e) give

3 — [6:463(1.603)2(1 — cos y; — 23.13 x 1.524y; x 0.46631 siny,)]
-

cosy, — 0.3956 x 1.524y, x 0.46631 siny,
=0

or

,  [26.6074(1 — cosy, — 16.4375y, siny,)]
M, = .
cosy, — 0.2811y, siny,

Again from Equation (e)

LS
M =
Vo +x

23.13
~0.3956 + 0.3062[(1 + 'y, cot y,) (1 — cos y,) + y; siny,]

The interaction between these two values of M| from Equations (a) and () gives
vy, =2313 and M, =-7.841KkNm

Hence Hy = 23.13(—7.841 x 0.3956) = 26.23 kN.
Equations (2.72) to (2.79) are invoked for parameters such as M,r, Myuf, Tf, Puy,
Var and Vyy. Similar calculations are made as given in Example 2.5.

2.7.3 Cohen’s method (May 1955)

Introduction

Here a comprehensive package is given for the analysis of determinate
and indeterminate conditions of helical staircses. The distributed load
w(s) can be non-uniform, with a non-uniform bending moment M (s)
per unit length of the curve. General equations of equilibrium are re-
lated to three loaded axes. An element of an arc is considered for a
twisted curve. For a statically indeterminate staircase, the equations of
equilibrium are not sufficient. In addition, equations of deformation and
angular rotation at any point needed to be considered. The determinate
beam staircase involves cantilevers with supported beams and beams
with three supports. The indeterminate considers cases where both ends
are fixed or one end is fixed and the other is pinned.

Notation for the analysis

= radius;
constant;
sections;

NSUQQ

f":ﬂb‘

FIZS

o
S

N

height;
sin ¢/a;

direction cosine;
principal lines;
normals in various

moments;

twisting moment;

directions;
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P = forces;

S = length;

|4 = projections;
Wiy, = load unit/length;
w = load;

Greek

a, ©, @, ¥, ¢ = parameters defined.

General differential equations of equilibrium (determinate)
Table 2.6 shows a twisted curve related to the system of coordinates
Ox, y, 2

x=x(s), y=y(s), z=2z() (2.85)

Table 2.7 gives a summary of equations of equilibrium for a freely
supported helical staircase. These are then adopted by including the
effects of uniform and non-uniform loadings and distributions of their
respective moments. The final expression are derived for moments, and
other reactions.

EXAMPLE 2.7
Analyse a freely supported helical staircase, with timber treads fixed to a reinforced
concrete helical beam. Use the following data:

a=085 a;=0525m, a=15m © =240°, H =3375m

timber treads: 1.05 m long and 0.05 m thick
R. C. beam = 0.338 m wide and 0.213 m deep

SOLUTION
A helical staircase with timber treads and R. C. helical beams.

Evaluation of parameters:

C=H;/® = (3 x3.75)/4n = 0.8054, cotd =c/a = 0.92,
¢ = 47°20'

sing = 0.735, cos¢ =0.678, tan¢ = 1.085

K =sin¢/a =0.84

S = helix length = ®'/K ~ 5 m

2 (a3 —a})

2

=1.128 m
3 a% —aj

R = centroid of each thread =

Weights:

weight of the beam = 8.52 kN, w total = 26.027 kN

weight of the treads = 17.507 kN

w/metre length = 26.027/5.0 = 5.205 kN/m

m1 = 17.507/5.00(1.128 — 0.875) = 0.886

C1 = —8.7789456, Cp = —5.1358775 C3 = —0.187853

Cyq = —8.3487387, Cs5= —0.6259467, Ce = —8.2269908

from O to angles all values for Tz, T,,, T, M;, M, and M} are calculated. The values

from 2ma/3 to 4ma/3 will have the same values as those given by ©' but with opposite
signs. These values are summarised for various angles of @',
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Table 2.6. Final results.

0 na/6 na/3 na/2 2na/3 Sta/2 Ta 7/6(na) 4ma/3

Ty (kN) -13.10 -11.544 -8.674 —-4.670 O 4.67 8.674 11.544 13.10
T, (kN) ? 0 3.358 5.810 6.716 5810 3358 O —3.358
Tp (kKN) —5.631 —-2.624 —0.845 -0.116 0 0.116  0.845 2.624  5.631
M; (kN m) 11.50 8.520 4.604 1.713 0 -1.713 —-4.604 -8.520 -11.50
M, (kNm) 0 —6.623 *6.94max -20.06 O ~2.006 -~-5.613 -6.623 O

—5.613
My (KNm) 12.50 18.81 at 0.218 11.75 0 —11.750 —18.882 18.881 —12.50

+18.882

Note: *19.771 max at na/4.
The maximum or minimum values by differentiation with respect to ©’. The points of intersection are found from the
second differentials of Equations (1).

Table 2.7. Summary of equations for determinate helical stairs.

= radius of curvature = —— a
p Y (@)

. . ds
1, = radius of torsion = — (b)

dé,

Direction cosine:
Three principal lines:

For T: aj, B; and y;
N: Iis, my and nyq ©
B: %1, np and v;
Ignoring small angles:
cos dp) =cos dp, =1 sin dp; = ¢y; sin ddp, = ¢,

cosd¢1__cos¢2_1 sind¢1_Lm_ sinddy;  ddy
» —2 2 T2 2

2 2 2 2
Now the following geometry is established:

u__dx ﬁ—ﬂ dz
l_dsv l“ds) YI dS

2 2 dZZ

©)

dy &>z dz &%y dz d?x  dx d%
M=l gm s e) M
ds ds ds ds
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Table 2.7 (cont.).

da _h By _m  dyy m da h Ay om
ds o’ ds o’ ds o’ ds ' A T
dv; _oom
S @
dh o Moo dm By ok dn o v M
ds p T ds P T’ ds P T
- - ds -
ty =cos(tor,8) = I, 1, =cos(for, n) = -y tp = cos(fo1, b) =0
Tangential Normal Binormal
- - ds o I
nyy =cos(ngl, t) = —ty, = e nin = cos(ng, n) =1, np = cos(ngy, b) = -
.
. - ds - -
b1y = cos(bpr, 1) =11, =0, bin = cos(bg, n) = —np = ‘[_’ b1p = cos(bg1, b) =1 (e)
, .

At point A an equally or unequally distributed load is given by the resultant force P and the corresponding resultant
moment by M which can be replaced by their projections with subscriptions, 1, 2 and 3. Angular rotations in the respective
directions are represented by ¥ with specific subscripts. T, 7,, and T} are (tensile or compressive) shearing forces (7, Tp)
and twisting moment M; and bending moments M, and M,. The sign conventions are given in Figures (a) to (c) and the
directions of moments are represented by double arrows. For a non-uniform load distribution w(s) per unit length of the

By (bi-normal)
o
X
+s Ag +1y Tp (tangent
— <
o x yd d(p
pPL V£
centre of
Yy 2 torsion
x ¥
Figure (a). Geometry of N

the curve.

i
IS 17
P
Figure (b). A twisted ;

curved stair.

My +dM, <D
< 1
Ty + dT, ﬂv\? %It
ﬁm ?n T, w Dn L
+n, - 1 : L
T+~ T, D,
Figure (c). Moment, 8Ty~ 2 gIM ? ¥
internal forces, TR " Mo
displacements and L+bo

rotations.
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Table 2.7 (cont.).
stairs

W(s) = wif + wpit + wpb 9]
and the non-uniform moment distribution of moment m(s)

m(s) = myf + mp7 + mpb (€3]
The following equilibrium equations have been derived by Cohen (14) with their application procedures:

A reference is made to Figures (e) to (g).

Equation of a helix about xyz0 Figure (e)

x=acos®, y=asin®, z=c0O, C=%=cot‘l—c— (h)

ds = /(&2 + dy2 + dz?)

4
I i
( I
T PRl
IA_ | /_/x
My M, =M,
M, = M, cosdl + M}, sina
. . ¥ M,., = Mj cosa. + M, sina.
Figure (d). Sign b r
convention. Y
Ay
L0
WA +s

} ~
2na
radius
Figure (e). Cylindrical of cylinder
surface.
a !
T t G |
dl~ W
a
R=2 a23 - a?
3 a% - a%
Section A — A
'R

n o v - _—"
Figure (f). Plan of i = w

staircase.

®
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Figure (g).

Figure (h).

- a? T sing K

Y2 +1.0 (]
V@+10) _ a _©

Where § is an independent variable, the coordinate axes and direction cosines are written as:

x =acos(Ks), y=asin(Ks), z=cKs

o= —sin¢sin(Ks), P =sindcos(Ks), y=cosd

I = —cos(Ks), m;=—sin(Ks), n; =0

M =cos sin(Ks), p) =—cosdcos(Ks), vy =sind

p=a/ sin? ¢ and is a constant, 7T, = 2a/ sin? ¢ and is a constant

Cohen took the uniformly distributed load and moment as Figure (h).
Changing S to © the new 7, and M are obtained

T; = C1 + C28in ® + C3¢c08 © + aw cot ¢O

1
T, = —[Crcos ® — C35in®]
sind

o

k)
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Table 2.7 (cont.).
Tp = —cot $(C2 cos ® — C3 cos O) + tan $C1 + aw®
M; = C4+ Cssin® + Cgcos © + a cot $(Cy cos ® — C3 5in ©) + wa’®
1
M, = ,—¢[C5 cos® — Cgsin®] +a cotd){Cg(cos © — Osin®) — C3(sin® + O cos ®)} + wa? + ma)
sin
Mp = —cot$p(C5sin © + Cgcos ®) +tan $Cq + a cot? ¢O(—C3cos © + C35in O)
— 2 (C25in® + C3.008 ©) — ——C} — wa? cot 6O )
sin“ ¢ cos* ¢

where, C| to C¢ are constants for a determinate stair, there can be no moment about the axes Ox and Oy. Cohen derived

the forces and moments at supports:
Ag—Vy, Vy, Vo and M,
at

A=V, V,, V/and M,

(m)

The division of the vertical load between Ap and A depends on the relative stiffness of the upper and lower supports. The

final values are given below:

Voevie__m sin @’ L 14+cos® sin®
TTET cosd o’ cos ¢ 2 e’

Ve yle l1-cos® wa (1—cos® sin®
YT T sy @ cos ¢ e 2

wa

=V = Tane®

M= g = e cos @ + wa? (1-cos® sin®
LT cosd o/ cos ¢ e o

At the origin of the helix Ag, the direction cosines are written as:
a; =0 h=-1 A=0
By =sing; m;=0; p;=cosod

yp=cosd; n1=0; V;=sind

when ® =0,
Tio = sindVy +cos oV, =C1 + C3
Ca
= —V = —
Tho * sin ¢

Tpo = —cospVy +sin¢dpV, = —~cot $C3 + tan $C)
M, =cosdM; = C4+ Cg
My, =0=Cs +acot¢C2+wa2+ma

a a
Mpo =sindM; = —cot $Cg + tan$pCy — ——C3 — —5—C
bo oM, $Cs $Cq 2o oo’

By substituting in Equation (u) the values of Vy, Vy, V;, M, the values of the constants are as in Equation (v)

wa®’
C=— cot
1 > )
cos ® 1—cos® sin® o4
C2=<m1tan¢17>—watan¢|: o — 3 ]:Cztan7
wa?@

Cy=—

2

(0)

()

47
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Table 2.7 (cont.).

2

Cs = —wa”“ —ma —acot$pCr
1—cos ® 1—cos® = sin® 2¢/ W)
Ce = mlaT,s + waz( @/s — sz ) + wa2 = —acot®C3 — C4

From Equation (1) and Equation (v) the shearing forces and bending moments about the principal axes and the normal force
and twisting moments may be found for any point in a simply-supported helical stair. The values of Tia, Npa, Toa, Mia,
M, and Mp4 at the other end of the stair can be obtained by resolving the forces and calculating the moments about the
three axes passing through Ag; they are:

Tia=~Tw, Tha=Tw, Tha=-Tp
Mg = —Miy, Mpa=Mp, and Mpg = ~Mpo ™)

Statically indeterminate case (both ends fixed)

Here the equations of equilibrium are not sufficient and equations of
deformation and angular rotation at any point are required. Cohen (1955)
modified the general equations of equilibrium for a determinate case
given in Section 2.7.3. The rotations are written as:

ds
d\pt = —'\I/n + K]O'Mt ds
P

ds ds .
dv, = —¥; + —¥, + K1 M, ds (2.86)

p Tr
d¥, = ds + K1 Mpds
where,

1 1 IL,E
Ki=—, Ky=— d o=

'Y En, T EL ™ °TI6
o A .
J = polar moment of inertia = 0L I, = geometric polar moment of
p

inertia.

Figure 2.13 shows displacements D;, Dy, and Dy at A. The change
of displacement when compared with that at A can be written as:
D, D; Dy, Dy,

—ds — —ds+ —ds— —ds (2.87)
Y Y Tr Tr

Figure 2.13. Helical
staircase with all fixed
ends.
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Figure 2.14. Displacement
and other parameters for
helical staircase with ends
fixed.

The angular rotation ({r,, V,,, V) at A causes a displacement of A" of
C1¥ ds when the change of displacements caused by the external loads
is added to these two displacements.

The total change of displacement is given by:

D, T;
dD, = 2" ds + = ds
a) t 0 +EA
D D T,
b) dD, = ——tds + =2 ds + Wy ds + —"—ds (2.88)
o T GA'n
dDp = — =" ds — W, ds ds
C) b 0 n +GA/I1

The effects of the shearing and axial forces can be proved to be negli-
gible; these are omitted from Equation (2.89)

D
a) thzT"ds

D D
b) dDp = ——'ds+ =2 ds + W, ds (2.89)

B P Tr

D
¢) dDp=—-—Lds—W,ds

Tr

Table 2.8 gives the brief set of equations which have been derived by
Cohen (1955).

When both ends are fixed the staircase becomes six times indeter-
minate, there are six equations of equilibrium and twelve unknown re-
actions. The deformation equations are used to determine the unknown
reactions. As shown in Figure 2.14 there is no displacement or angular




92  Structural analysis of staircases: Classical methods

rotation at A and B hence:

Wip =Wna = Wpa = Dig = Dpp = Dpa =0

Vip =V,p =Wpp = Dip=Dyp=Dpp =0 (2.90)
For a circular helix inserting @ = 0 and ® = ©’ in Equations (a) and (c)

Table 2.8 and inserting these in Equation (2.90) leads to Equations (f)
of Table 2.9 using Equation (1) of Table 2.7.

Table 2.8. Equilibrium equations for indeterminate staircases.

Rotations:
in® e
W, = C7+ Cgsin® + Cocos © + A0 — A0 —A2@°°;
(—©?%5in© — 30 cos ) (—©2cos ® — 3@ 5in O) e?
+ A4 + As + Ag—
4 4 2
1 ® +sin®
W, = ,—¢|:C3 c0s® — Cosin® + A — AﬂM]
( @sm®+c0s®) A (-©%¢cos® + Osin® — 2cos ®)
4 2
@2sin® + Ocos ® + 3sin® KidaM
) 4 ago - K1oaM: @
4 sin ¢

1

2¢cos ® — Osin®
[—Cs sin® — Cgcos © — A2<C°S—Sln):|

- sin ¢ cos ¢ 2
—2s5in® — Ocos O ©%5in® — Ocos® +45in®
_ Aa( si )+A4( sin + )
2 4
©?5in®? + Osin® e
4 458N+ = +40050) | ag+ W sin2d>—K1a(1+c’)M,,]
where,
Al = K2a2C 2 (K10’ cos? ¢ + K7 sin® $)C.
1= sin2¢1 sind 1 2 4
2
Ay = =Tk (14 0') + Ka]Co — —2 [K1(1 +0 sin® ) + K cos® ]Cs
sin“ ¢ sin¢
a2cos¢
Az = [2K (1+0) + K2]C3 — —¢[K1(1 + 0’ sin? §) + K7 cos? $]Cs
sin
a2cos¢
Ag=+ [K1(1 + o sin? $) + K7 cos? $]C3
sin? ¢
a’cos ¢ s 2
As = ————[K1(1 + d'sin® $) + K2 cos” $]C2
sin“ ¢
3 2
wa’ cos
A6=+—‘—'—?(K10,“K2)

sin ¢
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Displacements:

A reference is made to Table 2.9.

Consider the staircase shown in Figure (f) as having a uniformly
distributed load of Sw kN per metre and a uniformly-distributed bending
moment of m; kN m, of the helix, for which the values of T;, T, Tp,
M;, M, and M, are given by Equations (1) of Table 2.7. The following
displacement parameters are obtained by Cohen.

Table 2.9. Equilibrium equations for indeterminate staircases (cont.).

O sin® Ocos®

Di=C1+C118in®+ C12c0s® + Bj©® — By 2 - B3 >
—@25in® — 3@ cos ® —~@%cos® +305inO @2
+ By + Bs + Bg—
4 4 2
+B —®3cos® n 30%sin® + 702 cos ® +B —-@%s5in® 303cos® + 70sin®
! 6 4 4 8 6 4 4
1 ® (] in®
Dp = ——| C11c0s© — C125in© + By — By 52+ 500
sin ¢ 2

—©sin® 4 cos © —©2¢c0s® + Osin® — 3¢cos ©
—B3(—-—-——-—————2 )+B4( 2 )

© @ ® ]
+Bs( $in © + © cos ® + 3sin )+ Bs®
+B @3sin® ®2cos® G)s1n®+7cos®
N\ 6 4 4 4
+B ®3cos® ®25in® ®cos®+7sin®
8 4 4 4
1 —Osin® +2 ©
Dp= —— | —Cp1 sin® — Cpycos @ — By [ —2 20O+ 208
sin ¢ cos ¢ 2
—©cos® —2sin® ©%sin® + Ocos © + 45in @
— B 5 + By )

4 (©

+B ®3cos®+®zsin®+(~)cos®
"\ 6 4 4

+B @3 sin® ®2cos®+®sin®
8.7 6 4 4

where constants B; to Bg are given by

®2cos O + Osin® + 4 cos ®
+Bs( )+B5

— 2sin @)

+2cos @) +sin2 @D, — a\llb]

dép, dbD,

T@T+ ) = By +st1n®+B3cos®+B4®sm®+Bs®cos®+Bﬁ®+B7®2cos®+Bg®251n® d)
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Table 2.9 (cont.).

in which,
a Kio'acos? ¢
=—|-A 2 _—
sin ¢ cos ¢ l: 1082+ sin ¢ Ca
3 2 K
= —2 | (1 4 cos26)(Co — 0.7545) + (%2 4, + K19 1 4 o 4 o cosb)Cs
sin ¢ cos ¢ 2 sind

2a2K1(1 + o) cos ¢
+ X

C
sin? ¢ 2
N IS 2 K ~ 2a2 ’
By = L| M(—Cs +0.7540) + (252 4, + K19 B¢ + K‘(ljc’)cosd’cg
2 sin sin” ¢
where,
i=—2 _ N=qa +d +d' cos )
sin$ cos ¢

N ~ 2K ~
By= L[—OAg +5A4— wNQ]
sin“ ¢
where,
6= 1+ cos2¢ . 5= 3 —cos2d
2 4
[0 - 2k “
Bs = L[—Az +54s + chz]
2 sin“ ¢
2 ’ 2
A K
Bg = L|:—A6 cos 2¢ + w:‘
sin ¢
= i[6A4] and Bg = £[6A5]

M Values:
Mia = Cq4+Cs
Mg = C4+ Cssin® + Cgcos ® + a® cot O(C; cos © — C35in @) + wa’®’

1
Myp = ——(Cs+acotdpCy+ wa? + ma)
sind

1
M.p = m[& cos ® — Cgsin @ + a cot 6{C3(cos @ — @' sin®") — C3(sin ® + O’ cos ©')}

+ wa2 +ma]
g1 =0 cos?d+esin?d, & =2(1+0)+¢

g3 = 1 + 0’ sin® ¢ + £ cos? ¢
g4 = (0’ —€e)sindcosd
In the special case of symmetrical loading, the solution may be simplified considerably.

—Cs5 —sin® — Cg(l +cos @) ©

wa
Ci=——0cotd, Cp= = —Czcot —
! g Ocote, G 2® cot 303
Cs(1 — cos ©) + Cg sin @’ e
C3 = = —Cytan —
3 a® cot b 2tan
wa®
Cy=—

©

®
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Table 2.9 (cont.).

Q) C;+Ci=—Ci—Cssin® —Cjcos® —aqw® cotd

b) Cy=Crcos® —C3sin®

¢) —cotdpC3 +tandpCi = cot $(Co sin @' + C3cos ®') — tan ¢Cy ~ aw®’

d) C4+Cg=—Cs— Cssin® — Cgcos ® — a® cot$p(Cycos ® — Cysin @) — wa’@®’

e) Cs+acotdpCy+ wa® +ma = Cscos @ — Cgsin® + a cot ${C(cos @' — @' sin @) (&)

— C3(sin® + O cos ©)} + wa® + ma
f) —cot$Ce+ tan$Cs — —s—C3 — ——Cy = cot ¢(Cs sin ©' + Cg cos @) — tan $Cy

sin® ¢ cos? ¢
— a® cot2 $(C2 cos O + C35in @) + —2—(C25in @ + C3c08©') + —5—C1 + wabcot b
sin“ ¢ cos* ¢
The remaining two constants are determined by Cohen (1955) as:
diCs+e1Cs = f1; daCs+e2C6 = f2 (h)
in which,
102 ! ai ’ ’
sin” @ ® 20 (S}

d = el sin? ¢ — ——slr—l—(coszcb —54¢g sin2¢) - Tcos2 d(e3 —2e —2)

@' sin®' @/2 ® @/3 in®

Al sin? b(e — 28) — hllihed cos? de3 — 1) — Lm cos? ¢

2 2 6
) 12 ’
© ®

e1 = (sin® — @' cos ®)(1 4 cos (1))€1 312n ¢ 821I1 0s? ¢

@' si 2 e @/3 2

—ﬂn—(coszcb —g—¢g sin? o) + ——6—3—295—9(1 —2cos®)

4 12
0?2 sin@®

fi = —wa?® cos? ¢[®’ cos @’(293 - -;- - 1) + @’<53 - % - 1) + T(% -1

+sin® (=383 + e+ 2)] — ma® cos? $(1 + ) (© cos ® — sin @)

2 /3 2
®
& = 7 sin @’%(93 —2)— %ﬂb(l +2c0s©)
1—cos® 2
+ (cos* ¢ — s)(%)(@’ cos ® —sin®’) + ®'(1 — cos ®’)<ici(£—d—>>
@/ 2 @/2 @/ @/ : @l
e = %‘b(s +1) — ——040—5——cos2 b3 —2)+ -——S—?—(Zs sin2¢+ 20052¢+ %cos2 ¢)

: @l : @/ 2
+ (cos2 & —g) % (© cos © + sin @) + ¢ sin ¢§m4— (© cos @ — sin @) + £30> sin @ y
@' sin® 0" cos ©

Bez—e—1)———(3-1)

260/ 2
= —wa“®
h wa“®’ cos cb[ 3 >

— (1 —cos ®)(2e3 ~ & — 2)] +ma®' cos? d(1 + 3102 sin @'

Hence

_ fiea— frer difa—drfi .
=———; Co=—F"71— 1))
diey — drey diey — dpey
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EXAMPLE 2.8

Assuming the staircase given in Example 2.7 is now fixed at the far ends and also
assuming that the loads and other parameters are kept the same, re-analyse the stairs
for the unknowns T;, T,,, M;, M, and M} and constants C;.

SOLUTION
A helical staircase with fixed ends

K I,

I, E

2. Z 0.

e 0.957
g; = 0.654
€) = 43, £3 = 1,70 and g4 = 0.279
d; =12.0, dy=3.0
e1 =596, ey =-4.75
fi=34425,  f, =-37910
C1 = —8.7789456, Cy = 3.6460103
C3 = —0.1333309, C4 = —8.3487387
Cs = —0.2440182, Ce = 6.9215908

Substituting into Equation (1) of Table 2.6 forces and moments are obtained and can
be found in Table 2.10.

Table 2.10. Summary of results.

Parameters cY
0 na/6 Tna/3 na/2 2na/3 5ma/6  6ma/6  Tma/6 4wa/3
T: kN) —11.854 —-10.120 -7.459 -3959 O 3.959 7.459 10.120 11.854
T, (kN) —2.384 0 2.384 4.128 4768 4.128 2.384 0 —2384
Ty (kN) —6.774 —-3950 -1993 -0.778 O 0.778 1.993 3.950 6.774
+1.851
M; (kN m) 0.1154£1) ' 1.329 0.665 0 -0.665 —1.329 -1.790 0.1154ma
1.592 —1.851na
1.790 < ¥-1.592
M, (kN m) 3.167 0.488 —-0529 -0.644 —0.603 —-0.644 0.529 0.488 3.167
O.ZOZE) 4120 %))237::1
Mp (KN'm) 3.523 ' 4.087 3.751 2.251 0 —2251 3751 —4.087 —3.523
~4.120ma

—
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CHAPTER 3

Structural analysis of staircases:
Modern methods

3.1 INTRODUCTION

This chapter covers the analysis of stairs using three different methods.
They are:

— Flexibility Method

— Stiffness Method

— Finite Element Method

3.2 FLEXIBILITY METHOD

The flexibility method of a staircase is defined as its displacement caused
by a unit force. The displacement is derived using the strain energy
method.

The total strain energy is given by (e.g. for bending)

M2
U=/ ZEC;S (.1)

where U = total strain energy; M = bending moment; £ = Young’s
modulus; I = second moment of inertia.

Table 3.1 gives the general sign convention. The following steps are
taken into consideration:

— Establish static indeterminacy number.

— Choose release system to reduce structure of the stair to statically
determinate.

— This may be done so either by removing supports which are caus-
ing indeterminacy or making individual spans determinate by inserting
artificial hinges at supports with ‘bi-actions’.

— Draw B. M. diagrams due to external loads on the determinate
structure. It is termed as ‘mg’ diagram.

— Remove external loads and apply unit load or unit ‘bi-action’ at
each of the releases in turn. These are called m to m, diagrams defining
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corresponding ‘flexibility coefficients’ such as fi1 to fnn. The releases
of the flexibility coefficients ‘f’, are X1 to X,. The value of M given
in Eq. (3.1) is, by superposition, given.

M =my+mixy +moxo+ -+ muxy (3.2)

Table 3.1. Sign convention.

Bending Moment

+M
Bending moment: positive (Fig. (a)) ( \__
If the tension is at the bottom, and the shape

is concave, bending moment is positive.
a) Concave upward

Bending moment: negative
If the tension is at the top and the shape
is convex, bending moment is negative

-M

b) Convex upward

Shear Force +V

Shear force: positive
If the force goes upward at the left side

of the element and downwards at the right hand side. c) Leftside of the element (force up)
Shear force: negative -V
The opposite to conversion adopted l 1

for the negative shear
d) Leftside of the element (force down)

Axial force or normal force N
+N N

When the beam is stretched the force is positive
e) Axial force

and when it is compressed the force is negative.

f) Normal force

Torsion M, M,

g) Torsional moment (positive)

Mooy -

h) Torsional moment (negative)
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Table 3.1 (cont.).

When the torsional moment is applied (Fig. (g))

with the vector extending outwards it is treated

as positive. When it is occurring in the opposite direc-
tion, it is called negative. In order to illustrate further,
a beam with two different boundary conditions is
examined. A reference is made to Fig. (i).

bt
A B

M = | =
+
L/2 . L/2 L+ J

M,
r——ﬂMt m /IT
) o
'-———-'L l/ M,
e M, %’

i) A beam with two different boundary conditions

(]

The final bending moment diagram M is drawn indicating principal
values. Hence f;; flexibility coefficients are written as

m :/’""mj ds (3.22)

i EI
For example, for a stair with two indeterminacies with reference coor-
dinates ~1 and v the following relation can be written

X1+ fi2Xo = =d10
21 X1+ f22Xo = =82

In a matrix form, Eq. (3.3) is written as

[fn flz]{Xl]:_[aﬂ}
far fo | X2 320 (3.4)
[FHX} = —{810}

By inverting the flexibility matrix, the indeterminacy X can be computed
as

(X} =[£I {30} (3.5)

The values of {X} from Eq. (3.5) are substituted into Eq. (3.2) for various
ordinates of the final bending moment diagram M.

If the staircase components are subjected to shear, axial and torsional
effects, the above method is repeated and Eq. (3.2) can be written as:

V =Shear = v+ vi X1+ v Xo+--+v;X; +---+ v, Xp
N =Axial=no+nmXi1+nXo+---+n;X; + - +n,X, 3.6)
T =Tosion=To+T1 X1 +DXo+ -+ T;X;+--- +Tp X,

The total strain energy of a loaded stair is given by

(3.3)

s* * s* s*

N
U_/M2ds+ des+K,/‘V2ds+/T2ds a7
—J 2EI 2EA 2GA 2GJ '
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Figure 3.1. Simpson’s
Rule I.

where M = bending moment; N = axial force, V = shear, T = torsion,
A = cross-section, K’ = shape constant, G = rigidity or shear modulus,
J = polar moment of inertia, s* = stair structure.

mj mj mg
| L L @
/ mj3
) L L 1
EL
e e
EL EL
L L

Table 3.2. Product integrals fOL mim  ds.

L
mj
L
c Lac %Lac %Lac %—Lac %Lac %L(a + b)e
c : %Lac %Lac %Lac %Lac %Lac %L(?ﬂ + b)c
iL ir 1y 1y iLac LL(a+2b)c
3 ac I ac 3 ac 3‘ ac 2 g
@ %Lac ,_I;Lac %Lac %Lac %Lac %L(a + b)c
A §Lac ILac fLac fsLac fsLac fL@+b)c
- ILa(c+d)  tLa@c+d) LLa(c+2d) ILa(c+d) iLa(c+d) }LaQc+d)+b(2d+c)
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The corresponding flexibility coefficients are written as

ning V; V0 T; TO
ds +
EA / / (3.8)

fi = fj + f+ £ + 1

The combined values of the above, where loadings are involved, are
given as

- T
%; = /mmo / ‘1+K/‘W0 ./é;d (3.9)

di0 = O + 3 + 9% + 8%

The best and a popular method to solve intergrals in the above equations
is by the Simpson’s Rule. Each shape is divided into equal spaces and
contained by three ordinates. Two methods are adopted

m n

f~~—f P ds +
M EI

L
/m,- ds = g(mn + mjp + m;3) (3.9a)
mim; Limjymj miomiz  m;im;s
ds = — 4 3.9b
/ EI 3 [ EL + ElL + ElL ] ( )

The total is L under each curve.

In Eq. (3.9a); L/3 is changed to L/6 outside the bracket.

In order to minimise the number of calculations, flexibility coefficients
are tabulated using Simpson’s Rule for various shapes. Table 3.2 gives
various such values against noted shapes. Tables 3.2 and 3.3 demonstrate
the use of the flexibility method on staircases with different combinations
of bending, shear, axial and torsional effects. Example 3.1, by using these
tables, sets out step by step calculations for a free standing single flight
stair.

3.2.1 Wedge beam analysis

A wedge beam at the top of the flight can be subjected to different
loads at different positions. Table 3.4 shows some of the cases. It is
important to evaluate deflections and rotations. These can then easily be
incorporated into the main stairs as external effects. In a way they can
act as special boundary conditions. It is also possible that due to built-in
floors and beams, the wedge beam may be subjected to a moment, axial
thrust and shear. Using the flexibility method, the combined effect of
these three can be incorporated into a single matrix and the final results,
such as rotations and displacements can then be achieved. Table 3.5
gives a step by step method of achieving such results.
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Table 3.3. Flexibility chart: integral [ M; My ds.

k
k
Wl S Gl
! I
k
s{[]m IM; My LM My 3 M My
1
k
AII]]]I%- LM My LiM; My L0+ o) Mi My
AJ]D:D;]:; %lMiMk %lM,'Mk %l(l + BYM; My
A
GLpl, 5LMi My LQ + o M; My LM M,
]

%I(M,'l + Miz)Mk

él(Mil +2M,) My

HM[(1+B)Mi, + (1 + )M,

ﬂﬂlﬂ]Mf 21M; My SIM; M, 51(5— 8- BA)M;
Mf[mIIB 21M; My 11M; My 5i(5—o—a?)M;
¥ LM, LM, My LI+ o+ o?)M;
MJD]313> %lM,'M/c -llle,'Mk '171(1 +B+BZ)M1
J MMy ds I My My MM MMy
k
Mo iy il <l
I I
k
Mi[m:mMj 3IMi (M1 + M) $IM M, 2IM; My 3IM; My
I
k M, 1 1 S 1
AI}IU e} gIMi(My1 + 2My2) 3IM; My I Mi My 2l Mi My
M’m]}]:h %lM,'(ZMkl + Mys) %lM,‘Mk %lM,‘Mk %lM,‘Mk
AR
&1 5] FIM[(1 + B) My 311 + aB) M; My Bl -B—B)MiMy  {5I(1+a+o?) MMy
1

ZAlNnY

Ml

f My My ds

+ (1 + o) My2]

él(ZMilex + M1 My
+ MMy + 2MiaMio2)

HIM: BMu + SMi2)
I Mi (SMy1 + 3M2)
HIMi (M +3My2)

HIMi 3Myy + M)

%I(M,?I + M,%z + My Mi2)

LMy + M) My

17—51M,'Mk
Tg! Mi My
LM My

%lMiMk

%leMk

HIGMiy + SMin) My

£IMi My
LM M,
HIM; My
2IM; My

%leMk

Hl(Miy + 3Mi2) Mk

I%IM,'Mk
%lM,'Mk
I M; My

2l Mi My

%leMk

Note: M can be taken as m; My can be taken as M;; s = 1.
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Figure 3.2. Flexibility
diagram for Case (i).

a) w/unit length = 1 kKN/m b) \}
Bissnisnnnsintsinnaii
h=2.5m:H1
Xi=1
d)

e) 15PN f) 4.02 )

5.94

EXAMPLE 3.1: Free standing single flight stairs
A free standing single flight staircase ACB (Fig. 3.2) is to be analyzed using the
following loading and boundary conditions:

(i) Simply supported or pinned at A and B and rigidly jointed at C. A load of
1 kN/m is placed vertically on the plane projection of AC B, i.e. on both the stair and
the landing.

(ii) Boundary conditions are the same as in (i) but a load of 1 kN/m is placed on
the landing CB.

(iii) Supports A and B are fixed and a load of 1 kN/m is placed on the landing and
the span and the height are taken as 8 m and 3 m, respectively. Ignore torsional effects.

SOLUTION
A Single Flight with a top landing:

ET constant

Case (i) release support A and is replaced by:
X1 =1 as a horizontal force

Take moment about B

RAL=1Xh
or
h 25
Ry=—-=—=05
ATILTS
Hy =-1
Mca=—-1x254+05%x3=—-1=m¢
2

m0=1x§=3.125kNm
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Assuming the slope is at an angle 6

2.
tan 6 = —55— =0.833

8=39.8°
L_25 _ 25 o
1= §ine ~ 06401

sin® = 0.6401, cos® = 0.7683
Using flexibility tables

1 1
fu= §Lac§Lac

=%x3.9x1x1+§x2.0x1x1=1.97

5 1
bio = 5 x 2x (=13 +  x 3.90[~1(3 +5.25)] = —7.86

310
Xl = —— =4 kN
sl

Moment at C, M,
M. =mg+mx; =30+ (-4 =—-1kNm
Reactions:
25 1x5%
Rp = —4 x —
B 5t
Ry=1x5-05=45kN

=0.5kN

Moments at critical points

Span CB: at any distance x; = 0.5 m

0.5)2

M, =05x05-— =0.125 kNm

In span AC, similarly at a horizontal distance xo = 1.5 m, My = 0.625 kN m and at
a distance of 0.90 m, the value of My3 = 0.65 kN m which is the maximum value in
this span.

Shear V
At A

V4 = Racos®— Hysin6
= 4.5 x 0.7683 — (—1) x 0.6401
=09 kN
At C
Ve (left) or Vcg = V4 — wLcos6
=0.9— (1 x 3.9 x 0.7683)
=—-1.4 kN

Ve (right) or Vcp = Rq — wly
=45-1x%x3
=1.5kN
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Figure 3.3. Flexibility
diagrams for Case (ii).

At B
Vg = Vcp —wl,
=15-1x2
= —0.5 kN

Axial Effects N
Owing to variation in geometry, the stairs can be subject to axial loads.

A+ A, Ny =axial force at A= —R4sin6 — Hy cos 0
=45 x 0.6401 — (—1) x 0.7683
= 5.94 kN Compression

A+ C, Nc =Ncy (left)y = N4 +wlLisin8
= —5.941 + (1 x 3.90 x 0.6401)
= —4.02 kN Compression

Nc = Ncp (right) = —Hp = ~4 kN

Case (ii), all dimensions are the same, but a load of 1 kN/m is acting on the landing
CB. All diagrams for flexibility must now be modified since mq diagram is altered.

My at C
Take moment about B when x; = 2 m:
2
Rax5=1x2x1; RA=§
3
Rp=-
B=5
3
moc=§x2=1.2kNm

Similarly when x; =1 m from B

mo = 1.1 kNm and x, = 1.6 m from B
mo = 1.28 kN m which is the maximum
m diagram of Case (i) is still the same

g i)
017 1014

': L=5m \

h)
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Figure 3.4. Flexibility
diagrams for Case (iii).

810

N

d10 = %— x 390 x 1.2(-1) + é x 2[(—1 x 1.2) 4 2.2]
= -2.69

X1 =137kN

M=mg+m X
M. =12+ (-1)(1.37) =017 kNm

For X,=1m
M, =1.10 - 0.69
=041 kNm

Case (iii), when top and bottom supports are fixed and only the landing C B is loaded
with 1 kN/m.

a)

3m=h=H1
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1
f11=§(5.0x1x1)
__5
T3
1
f22=§[(5x1x1)+(4><1><1)]
=3
1
f33=§(4><1><1)
_4
T3
fu=fn=0
1
f23:f32=3(4X1X1)
_2
3
1
f12=f21=g(5><1><1)
_5
6
310=0

1
820:53():5(4X1X2)

_8
3

C (1) (12) (f13) 7]

5 5 0

’ 6 X1 310 =0
(fgl) (f?z)z) (f;a) X, b= 82():,_8;

s Sl x _ s
B ) G | b0 = —3
Lo 1 4
X1 =0.30 kNm
X2 = —0.59 KNm
X3 =-70 kNm

M=mg+m X +myXs+m3Xs

Mp =0+ (0 x 0.30) 4+ (0)(—0.59) — (1 x 1.70)
= —1.7kNm

Mc =mg+m X1 +maXs +m3X3
=04+ (0x0.30)+ (1 x —0.59) + (0 x —1.70)
= —0.59 kNm

Ma=mog+m X1 +mXo+m3X3
=0+ (1 x 0.30) + (0 x —0.59) + (0 x —1.70)
=030 kNm

Figure 3.4(e) shows the final M diagram based on 1 kN/m. Assuming the dimensions
are constant, any change in the load can simply be taken as new load kN/m. The
respective values of M or others in the above 1 kN m cases can be enhanced by that
factor.
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Table 3.4. Deflection and rotation for wedge beam under concentrated loads.

1. Find the vertical deflection at B

EI constant w
2 |
mom| A
3 = dx A a B a C
B / EI
0
= %[Z(ZWa x a) + Wa x a] 2Wa " -
mg a
_ 5Wa3 l
T 6EI A

2a

momi
6p = dx
B /EI &
0

a
= 6?I—[Z(ZWa x 1)+ (2Wa x 1)

a 1
2. Find the slope at B m ,J\[

4

R

4

1

+2Wa x 1 + Wa x 1]

_ 3Wa?
2E1 W
3. Find the slope at the free end D - /‘\.Wa\l w
3a
0 /m()ml dx 2
D =
J TED m T\
2 J/
a
=2 _[@eWax1)
6(2QEID) 217 g |
+2Wa x 1 +2Wa x 1 + Wa x 1]
a W
+ =2Wa x 1+ Wa x 1] 2w m l o
/——_’_——-—-—__‘
_swa’ Wa B a C aoD
4E1 2Wa
mgy Wa w
/ J
-~
i) Loads of tips
™ )
2 1
1 1
1 2EI EI
H |
7
ii) Loads other than tips
2Wa

. . . Wa W
Figure 3.5. Stair girders or
stringers under

concentrated loads. my j
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Table 3.5. A combined effect of three-stress resultant on a wedge beam.

A cantilever wedge beam is subject to an axial effect N, bending moment M and shear V as shown in Figures a)-e) for

which the reference coordinates are given in Figure 3.6. It is assumed that EA and ET for this beam are constant.

For N =1
f11=i fa=0, fr11=0 2
A ) ‘
3
For M =1 § EA, EI const \2 1
L L -/
fiz=0, fon= I’ f= ~3ET
ForV =1
L? L3 b
— = —_-— = — )
f3=0, fn 2E]’ 3 3EI 'V
§ EA, EI const \
[ (i () (fi3) ] N
ET
o _ (1) () (f23)
[f] = flexibility matrix = o L iy 9 . L .
EI 2E7T f |
() () () 1
12 L3 g
L 0 —2mr 37 -
EA
hence
3y N
{D} = displacements = { 6 } =[f]{ M d) L
dy 14 EI 2
g /> 35T
1
e) 1
Figure 3.6. A wedge beam g .
under three stress E’\ 15y
resultants. 2E]
EXAMPLE 3.2

The layout of a staircase with one flight and a landing is shown in Figure 3.7 in a
horizontal plane.

The structural layout of the building floor is such that a load W acts on the flight AC
in its plane and which causes torsion along with bending. Using the flexibility method,
calculate and draw the torsional moment. Assume EJ and GJ constant throughout.

109
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Figure 3.7. A horizontal
plan view.

4GJ] X=1 My
d P
:1—"’ ]
| i
S
e)d If4GJ:3EI 1 A >~
A M

W[, , 9EI
w7 i+
1 : =Mp;
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Figure 3.8. A single flight.

SOLUTION
One flight staircase under torsion.
At the ground floor, the flight is rigidly jointed and the landing is supported such
that the end D is taken as pinned or simply supported.
Let Mp represent the moment at the bottom and M; the moment at the top.
Flexibility diagrams are given in Figures 3.7(a) to (f)

4 3]
fir = —[2(1)0) + —(6!2)]

6EI 6GJ
A N 312
T 3EI  GJ

43 9E]
3EI 4GJ

3 - 9E1
X1=_£=_w 1+_

S 4 AGJ
M =mg+mxy

Solutions are shown in Figures 3.7(e) and (f).

EXAMPLE 3.3

A stringer beam is supported at ground level A and at the first floor level B. Due
to the other building requirements, it becomes necessary to support this beam at any
intermediate point C. The plane projection of the system with loads are shown in
Figure 3.8. Using the following case studies, calculate moment of the stringer beam
at C:

a) A and B are simply supported and the column is placed at the centre of the
stringer beam. The load w (2 kN/m) acts on the entire beam. The floor at the support
B sinks by 1 cm. Take EI = 12.5 x 107 kNcm?.

b) The column support at C due to constructional problems has been moved closer
to A such that the CB is not greater than 1.5 times span C A. The load is kept the same
as in a).

¢) As in b) but the uniform load w acts on AC.

SOLUTION
Stringer beam analysis
a)
L
1L3
Elfiy = [ mids=-=
4T /ml 37
0
i 5 wl? L
E1810=/m1m0ds- E-w—g— x L
0
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310 5
Xi=—-——==-wlL
Ju 8
If any span AC = L, then
5
X =-wlL
1= zwl

w=2kN/m L=10m
Mc=-25kNm

L
V0=w7=20kN

X1=§><2x10=25kN

1
Ve = - kN
€=3

3
V=vy+uvx = ng1 =T75kN

if the support sinks by 1 cm

5
X, =22 _ 01875 kN
fu

Mc =mg +mix; =0+ 10(—0.1875) = —1.875 kNm
5
final X = §WL1 —0.1875 = 24.8125 kN

L2
final M, = —-“18— —1.875 = —26.875 kNm

Figures 3.8(g) to (k) give the step by step procedure
b)

Li=10m, Ly;=15m
(Figs 3.8(1) to (p))
1 1 25
E1f11=§Lac=<%x10x1x1>+(§x15x1x1>=?

1 1 15\%7 1094
E1810=(§x10x25x1)+[§><15x1(2x?>]:—-——

3
Xp = -0 _ 438 1Nm =M,
i
¢) A reference is made to Figures 3.8(q) to (y)

2
E1f11=(%x10xlxl)+<%x15x1x1>=?5
E1811=%X10X25X1=-2—§2

X1 =-2% _ _10kNm
it

M=mog+m X,
Mc=0+1x X,
=X1=Mc=-10kNm
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g)

h)

h);

k)

Figure 3.8 (cont.).

D=

\_- wl 2= 2-20%

NI [t

lcm

+ 10m

@

—1.875kNm

®
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Figure 3.8 (cont.).

p)

Y)

C w=2kN/m

010=909

~

T~

+1

@)

01 =/

011 =/u
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3.2.2 Analysis of slabless treads-riser stairs
(Saenz and Martin method 1961)

In this analysis it is assumed that, owing to the possibility of the existence
of a rigid beam at the beginning of the landings or a thick part of the
slab at the ends, the stair is fixed at the end. For architectural reasons the
treads are of the same size and are even or odd in number. Figure 3.9
shows that when the stairs are cut in the middle and X1 = 1 at this cut or
section, the M) diagram is constructed in the usual manner as described
earlier. Generally bending moments, shear forces and axial forces are
developed. Since the loads are symmetrical and the stairs in Figure 3.10
are unsymmetrical the values of V and N are zero, and hence only the
My diagram is constructed. This is shown in Figure 3.10

2
= — dS, = d .1
fu= [ so= [HE0 (3.10)
d
X; = -2 (3.11)
fu
0Odd and even number of treads:
odd number of treads a = 2n + 1 (3.12a)
even number of treads a = 2n (3.12b)

for the even number of treads P/2 load is taken into account at the top
of the middle riser.
Odd number of treads:

; 2L4
Flgure 3.9. Tread-riser EIl;
stairs.

(C1+KCy)

+ ﬂA
K b

+
=

1
b
K3
2nh1

:' ] hy di
i . | @ e

" L1 ]
L L L

I : L
L=Qn+1L;

al ' al
2
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Figure 3.10. Moment
diagram for external
loads P.

Figure 3.11. Even number
of treads.

PLY 'S
|<*— 4 P
=-=H4 { ¢ |F h
= L:.-: P h
< gl - " g
¢ A i
i ] P hl-
]| L A
X il . o R
< il ' I
T ] “ diagram
N Ll “ 1]
oy dn ol n | 8]y
@n+1L,
P B
- P )
37! P Mp=Xp
h1 =
hy
g |
L1 Ll Ll L1
aL aL
2 2
aL
Where
2n+1 ~ h I -
Cy = , Co=n, K=-—x-—, K=1+4k 3.13
1 2 2=n L X I + (3.13)
PL? -
— 310 = —+1(C3 + KC4) (3.14)
Elp,
Tables 3.6 and 3.7 give the values of Cy to Cy
where
1 21
C3 = nn+ 1) Cy = M (3.15)

4 6



Flexibility method 117

Table 3.6. Odd treaded stairs.

Coefficients No. of treads ds = a

3 5 7 9 11 13 15 17 19
Cy 1.50 2.50 3.50 4.50 5.50 6.50 7.50 8.50 9.50
Cy 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
Cy 0.50 1.50 3.00 5.00 7.50 10.50 14.00 18.00 22.50
Cq 0.00 1.00 4.00 10.00 20.00 35.00 56.00 84.00 120.00

Table 3.7. Even treaded stairs.

Coefficients No. of treads ds = a

2 4 6 8 10 12 14 16 18
C 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
Cy 0.50 1.50 2.50 3.50 4.50 5.50 6.50 7.50 8.50
C3 0.25 1.00 2.25 4.00 6.25 9.00 12.25 16.00 20.25
Cq 0.00 0.50 2.50 7.00 15.00 27.50 45.50 70.00 102.00
Hence
Xi=M (3.16)
) C3+KcC
Xi=M=_220_pp, BT 24 (3.17)
1 C1+kCs
mid span moment when it is simply supported
nn+1
M=my= 2{—(——)-PL1}
4
SO
Mis=Mp=X4=Xp=2C3PL1 —mg 3.18)

Even number of treads:

Now take P /2 load at the top of the riser (at the top of the middle riser),
the coefficients Cq, Cp, C3 and C4 are changed for even numbers. In a
similar manner each one of them is evaluated. These values are given

below:
2n—1 n?
Cl =n, C2 = ) s C3 - 'Zs
(3.19)
nn-—1)Yn—-2) nn-1)
Cy =
4 6 t3

On the basis of the above equations, Tables 3.6 and 3.7 are prepared for
odd and even treads for stairs.
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Figure 3.12. Rotations
allowed at the far end of a
staircase.

EXAMPLE 3.4
Calculate moment at the fixed ends for a staircase. Using the following data:

P =2.58 kN
a = 12 even number treads
L =029 m
Ip1 =853 x 1077 m*
In1 = 1667 x 1077 m*
hy =0.178
SOLUTION

Slabless stairs
A reference is made to Table 3.7

fora =12 coefficients C; = 60, C; =5.5, C3=9.0, C4 = 27.50

C3+ (1+£)Cy
! C1+ C2/2
9.0 + (1 4+ 0.3265) x 27.50

mo= PL

=258 x 0.2
258 x 02— 5 5 % 0.3765
45.47875

Xa=My
Xp=Mp=2C3PLy —my
=(2x9x258x%x0.279) —4.2~8.757 kNm

Boundary conditions
I. When the landing exists on both sides in a staircase

Figure 3.12 shows a staircase in which A and B form the centres of two opposing
landings such that symmetrical rotation can occur at these points, which act as the end
supports of the staircase. When 64 = 6p = 1 at these points, the resulting rotation at

the mid span section will be 8;,, = 2.
—dw _ 2
% Fib!

My = mid span moment = X =
-2

= _Ll R
_ —EInL

Li(Cy +12C2)
= Ksp = Kpa

9A=1
\%S
y: |

\ _ h
\ ! X h

i Ty

) 93 =L—1 1

BlY M

L, L, L L L
I | |

(3.20)

(3.21)
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The rest of the procedure is the same as given earlier.

II. When the far ends carrying landings of a staircase are fixed and additional supports
exist at the other ends of the landings

Figure 3.13 shows a typical staircase where landings are loaded with uniform load-
ings.

The stiffness is given by Eq. (3.21) for K45 or Kpa (3.22)
41y

Ls
Where Iy = second moment of area of the landing at vertical section.

for the landing AAj, the stiffnes Ka4, =

L = landing span

The distribution factor DFy, 4 from Equations (3.21) and (3.22) is given by

4
DFsa = 7
44 ———
C1+kCy
for the landing only where
I
K* = + (3.23)
il ==
" (M)
The distribution factor of slabless = DFap = 1 — DFj 4 (3.24)

tread riser staircase AB.
Owing to a symmetrical deformation, the moment distribution at support A is required.

Map = Xap = —Xaa = DFaa, Mfp — DFapMf, (3.25)

Ma, 4 = the final moment at landing A1 A

Mg+ M§
AB AA
= Mfp — DFaa, ’ — (3.26)
mid span momentM=mo+(M£B+M§A1)DFAB 3.27)
Figure 3.13. A staircase
with concentrated loads P reactions Ry = C, P + wLs _ [MAAl + Maa ] (3.28)
on steps and uniform loads Ly
on landings.
w
F P
; F
241 v = P hy
l| P hy
—— P 3 5 -
t ) R—
}
! s |[TITATTITIOOON =
il B R
!
[}
L L L " Ly Ly L
Li]
2L, +al
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w
a P
2 1P
A
P .
1; P h
bt
i Fop - hlL
1l 2 —
I .
H
1]
L L | L n ol | L L
2L, +al

Figure 3.14. Stairs with
equal landings with no
supports at A and B.

Figure 3.14 shows the staircase where the supports at A and B are removed. The
load is added at A and B and it is assumed they have equal deformation. The vertical
deflections at A and B are equal and the moments reactions are:

1
M{, =1- 5 DFaa
Map =—DFap
R4 = reactions due to vertical placement

1+ 3DFyp

29
2L, (3.29

When supports are removed, the value of R4 = 0, hence the final moments become:

DF4 A Ry 1
Maja = Mf 4 — —=(Mfp = M{y,) = 21— 5DFaia (3.30)
A

R

Map = DFa,aM5p — DFapMJ 5 - k,—ADFAB (3.31)

A
R

M =mo+ (Mg + MJ \)DFaa+ R—j‘DFAB (3.32)

A

EXAMPLE 3.5
Calculate final moments for the staircase using case studies I and II and the following
data:

P =258 kN
a=12
L1 =0279 m

I =853 x 107" m*
Ly=20m

w =7.35 kN/m
hi=0.178 m

I = 1667 x 1077 m*
I =1ILg

Assume clockwise moments are positive.
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SOLUTION
Staircases with specific boundary conditions.
- _ il
K = = 0.3265
I Ly

for a = 12 coefficients C; = 6.0, C3 = 5.5, C3 =9.0, C4 =27.5
C3 + (1 + ?)C4

mo = PL; — =5.834 kN m
Ci1+KG
bd I Ls
K = = 7.1685
IniLy
4
DFpa = =0.962

4 7.1685
6+5.5x 7.1685

DFsp =1— DFs,4 =0.038
Xa=Mpp =7123 kNm

wLl?2  ~735x20
Xaa, =Mf, =- o=, =-1225kNm

Map = —0.962 x 7.123 = 0.038(~1.225) = 6.90 kNm

0.962
Ma 4 =1.225 - [7.123 + (—1.225)] x T6 = —1.504 kNm
mo1 = M = 5.834 + (7.123 — 1.225) x 0.038 = 6.058 kNm

2
Rp=2x258+4+1735x 5~ (—1.504 — 7.123)/2.0 = 33.61 kN

3.3 SLABLESS STAIRCASE ANALYSIS UNDER UNIFORM LOAD

The slabless tread-riser stairs with the far ends fixed are subject to a
uniform load w = wp + w; where wp is a factored dead load and
wy, is a factored imposed load. The flexibility method is again adopted.
Figure 3.15 shows the flexibility diagrams on the lines suggested in the
preamble.

Both ends are restrained and
L = total horizontal length

=m+ 1L (3.33)
moment of inertia at any reference point = I
I
Io= % (3.34)

hence the Iy/1I for the riser = 1
by symmetry X1 = X (3.35)
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Figure 3.15. Flexibility
diagram for a uniformly
loaded slabless stair.

w=wg+wg — moments in the nsers
| (
l L
t L =,l my— moments in the tread,
mgy — moments in treads )
A 2 B g E
==
wL?/8
. .2
mo = wTEI/mlmods (3.36)
1 In M
El = —= L —_ 3.36
rf11 = 3mom1 (ILl +L1 (3.36a)
1 It h
EI — —m?L 22 2 3.36b
r1f11 X (ILI +L1> ( )
1 I h
5 _Em"mlL(Thl + L_l)
X =20 _ Ll (3.37)

S 1 5 (In M
—miL 22
Zml It T L1

since m; = 1

X 2 2wl?  wL?
= --Mmp= "=
T3 T T 2
It is interesting to note that the fixed end moment for the symmetric
slabless stairs, without landings, is equal to the fixed end moment of a
straight clamped beam with the same span and load. The simplification
of distributing the height of the riser between the length of the tread is
acceptable with a high degree of accuracy provided the stairs have more
than 4 treads. Hence the uniform load can be written into a concentrated
load as:

P

- 3.39
w I (3.39)

(3.38)
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EXAMPLE 3.6
Examine, in the light of the above technique, a slabless stairs using the following data:
P =258 kN
a=12
L;=0279m
Ig =853 x 10" m*
h; =0.178 m

Iy = 1667 x 1077 m*

SOLUTION

Slabless stairs

From previous calculations

coefficients C; = 6, C3 = 5.5, C3 = 9.0, C4 = 27.50, k = 0.3265

C3+(1+k)Cy

— =4.2kNm
Ci+ Crk

mo= PL;

w= i = 9.2473 kN m
Ly

L=12x0279=3348 m

3.348?2
= 12.956743 kN m ~ 12.96 kNm

mo = 9.2473 x
2
X1 =Msp = §m0 =8.64 kKNm

The value of X; = X4 = Xp = 8.754 kN m from the previous method. They both are
in agreements the error being 1.2%.

3.3.1 A generalised case of even and odd number of treads
with variable thickness in slabless stairs

Consider a slabless stairs with any number of steps or treads ‘n’, where
‘n’ may be odd or even. Let the thickness of the tread be #y and that of
the riser be #,. Again, the value of K will be written as:

— Ir hl)
K=+
<1h1 Ly

1t 2 trh?
12
The fixed end moment M at any end can be represented (Fig. 3.16):

(3.40)

hence Iy =

_PnLi?-1 | 14K

12n 1+ 1le (3.41)
n

M

= MFKp

Equation (3.41) contains two terms: the fixed end moment M F for a
simple structure which is outside the brackets and K with a ratio of n in
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P

‘P

Figure 3.16. Slabless stairs <
with variable thicknesses of
riser and treads.

nL

DNNANNNNNG
Ly
b

the bracket. The variation of ‘Kp’ versus ‘n’ can easily be determined

and plotted. Figure 3.17 shows a plot for Kp versus n for various ratios
of hi/L1.

EXAMPLE 3.7
Solve the staircase given in the example above using the above equation with constant

and variable thicknesses.

The following data can be used for the solution of this problem:

P=258kN, n=a=12

Data 1
t3
L; =0279 m, ti = 0.01045
r
hy In
— =0.638, — =0.5117
Ly I

the section of the riser and the tread has to resist exactly the same bending moment.

SOLUTION
K =0.3265
Ks 14 0.3265 — 1.0009

T 1+ 0 x 03265
M=MFKg

258 x12x0.279(122 - 1)

12 x 12
x 1.0209 = 8.757 kNm

graphically computed
Kp =1.021
M =8.757 kNm

The two results from Data 1 and 2 show very little difference when the thicknesses are
different for the same ratio of h1/L;. For technical reasons, both may be acceptable.

Data 2

b m _y
th I

hy

— =0.638

Ly

—  hilp
K = =
LIy
141
Kp = + = 1.04348
1+T§ x 1
M=MFKp

258 x 12 x0.279(122 - 1)
B 12 x 12

x 1.04348 = 8.951 kN m

graphically computed
Kp=1.044
M =8.957 kNm
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Figure 3.17. Plotted values of the variation of K with n.
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Figure 3.18. A slabless
staircase.

0.279 0.279
All dimensions 0'17;l_ A’I).IO
in metres
0.178
0.1oI

1t

0.125 0.125 0.125

EXAMPLE 3.8
Figure 3.18 shows treads and risers for a staircase. Using the given dimensions, calculate
Iy and I for each step and determine their ratio. Use the stairway width as 1.0 m.

SOLUTION
1. .10
Iy = HOX 010 e 1077 m
12
1.0 x 0.125%
Iy = —==" _ 1628 x 107 m*
12
I
M 1.954
I

3.3.2 Free standing staircases with different loadings — analysis

Three different types of staircase with various boundary and loading
conditions are shown in Figure 3.19. In Figure 3.19(a) only top and
bottom landings are simply supported at far ends with live loads g
and qr. Figure 3.19(b) shows a continuous support of the flight with
cantilever landings.

g1 and g, have relations. In some cases g, = 1/3q and g, = 1/3q)p.
Slight changes in notations were necessary so that each one in a specific
span might be relatively identified.

Figure 3.19(c) shows all points of the staircase that are supported.
The loads g and gx represent imposed and dead loads. Figures 3.19(d)
and (e) show generalised dimensions. The total load

W = Yg8k + Y19k (3.42)

where, v, = load factor for dead load

v, = load factor for imposed load.
The general bending moment is wL?/12.
The general flexibility equation is written as:

mim; Vjv; T,-Tj
- d — —1d 3.43
fij / E] &7 Kw+/ ko [ (3.43)

s N N
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Figure 3.19. Stairs with
different loadings.

A TITTTIT o SOOI eroen,
SEC NUUE © RN % W W & B2 L L2 Ls,
a) b) ©)

T pr 1 L2 1
'% L
g

T L
d) e) g; P0=qL:22
AN
11
H, / qop
X;=1
o ()
0 Ogy= woy [ *'-'\('_;z;
1= v
oy | —
| : . | ]
pr L, pr v
f) 8)
m;mo v vo T;Ty
di0 = ds —1 d 3.44
'O/EI +/Kw+/K9 g (344)
A} s N

n n n
= Zm,—mo + Z vivy + Z T"6p with multiplying factor (3.45)

Looking at the landings and the flight in Figures 3.19(f) and (g) when
X1 = 0 or X = 1, various displacements, rotations and moments are
shown.

1 L
Elfi=3Lo+ 66—”
il

3 2
q,L L L
Eldjg= L3 <q,,7”1 + poﬁ) (3.46)

3
_ (Efi) (3.47)
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Dy = depth of the flight slab
Dy = depth of the landing slab

If both slabs have the same depth the value of = 1. Tables 3.8 and 3.9
show various parameters for loading cases and boundary conditions.

_Sw0 _

o

1 <‘1_P>l<£ay_ 4 L(@)z
24 qL 61 Ly 2_611 L,
B 1 L
— 4 __B_ ﬂ)
2 6m\ L2

(3.48)

It should be remembered that q;, or g, will have a value of w, the total
load/unit length.

Table 3.8. Moments for two cases.

My = right moment of x = my; + mx;; + mxii;

mi = myy + Ml

For Case I = myym = mym = KIpL;ch/S

mym =0
Myr =—mgy = Xy

0.3

2.19
2.39
385
2.63
10.0
2.64

3.85
200
2.08
4.18
1.01

I

I I I SN

111

¥ 3§ S

|
3

(DIN 1045)

0.4

275
3.23
313
3.79
9.6
4.51

3.65
66.7
2.29
4.55
1.48

vivj = ViV;/ky, where Ky = Vj/wj,

L Lpx g
r — I/\é —_——— —
&5 +Km é q{ IP< ><l: ée’ }
% B | o—
)
Case | Case I1
0.5 0.6 0.07 0.8
3.17 3.45 3.65 3.81
4.05 4.88 5.81 6.81
27.8 26.4 25.7 26.4
5.18 6.85 9.00 12.1
9.2 8.87 8.6 8.42
6.67 9.4 12.5 16.0
3.49 3.34 3.24 3.16
385 26.4 21.3 18.6
2.58 3.0 3.57 4.37
5.08 5.96 7.15 8.55
1.93 2.36 2.78 3.19

K6=M;/0;

1.0

9.6
0.0
9.8
20.9
8.22
24.4

3.07
16.1

6.61
13.2

4.02
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Table 3.9. Moments, rotations and displacements for three cases.

Moment m; = m;yy + mg + m;x

Rotation 6; = 8;1 + 6;11 + 6;m
Displacement w; = w;1 + winp + wim

L

‘DX

2

L
e

N

kNm/m
mg
Casel Case Il
Lpy/Lpx 03 0.4 0.5 0.6 0.7 038 0.9 1.0
M 412 4.41 4.89 5.53 6.34 7.32 8.46 9.77
mxm = qpL3, 7.88 8.04 8.46 9.11 9.97 11.0 122 13.6
Mym 892 105 13.0 16.5 212 275 35.7 46.1
Myye = & 2.74 3.84 5.1 6.58 8.31 10.3 12.6 15.3
Myire = 3.83 6.32 10.1 15.8 24.5 37.6 57.2 86.5
Koyr = qpL3, 37 8.0 15.8 30.0 53.5 95.2 161 270
Kor =qpLpy 3.21 6.34 115 19.2 303 45.2 65.2 91.2
s 6.9 5.6 49 45 43 4.2 4.1 4.1
Mxm 12.6 10.5 9.6 9.2 9.4 9.6 10.2 10.9
Mym 200 91 52.5 40.1 33.2 294 26.9 25.0
Myye =% 4.7 53 6.3 7.8 9.7 12.1 15.4 20.7
Koyr = —PoL2, 1.62 3.08 5.11 7.76 11.0 14.7 18.9 23.6
Kur = PoL3, 1.86 342 5.55 8.68 12.8 187 26.7 37.2
My 22 2.35 25 2.65 274 2.8 2.85 2.9
Mxm =mp 4.6 5.7 7.9 12.5 35.0 100 0.0 -31.0
Mym 2.1 22 2.5 3.1 4.0 5.1 6.5 8.0
Koyr = —moLpy 1.06 1.56 2.03 2.46 2.86 3.26 3.65 405
Kor =moL2 1.66 313 513 7.69 10.9 14.6 189 24.0
(DIN 1045)
EXAMPLE 3.9

Using Tables 3.9 and 3.11 where relevant, compute X and My, for Lpy/Lpx = 0.5

SOLUTION
Free standing staircases
using Eq. (3.42)

61 = oo,

M1 m = moment in the fight =

L
Mim, Myl for B and T”l

O = 6.76,

B

1 B

2
()
13.52\ L

2 qLL

LPY
27T m(‘g)

3

O = 1.93

ql] qul}

2
— qLLs

8 my

mrm
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can be computed. The value of
_aqLls

T2

ref: Tables 3.9 and 3.11.

Py

Table 3.10. Coefficients for the determination of bending moments of staircases with two sides of the landing slabs
supported.

g Lpy/L3 03 04 05 0.6 0.7 0.8 09 1.0
1.0 my] 18.7 23.7 32.7 53.8 159 -162.0 -53.0 =315
mpp, 14.0 12.1 10.6 9.4 8.42 7.62 6.95 6.38
0.75 m 16.8 20.0 25.0 337 53.2 131.0 —261.0 —64.4
MLm 15.3 133 11.8 105 9.42 8.52 7.76 7.12
0.5 Myl 15.1 16.9 194 23.1 28.9 39.2 62.5 161.0
MLim 17.1 15.2 13.6 12.2 11.1 10.0 9.17 842
0.25 m 13.5 14.2 15.2 16.5 18.1 20.2 23.1 17.1
mpim 19.7 18.3 16.9 15.5 14.3 13.2 12.2 11.3

Dy = thickness of the flight slab
Dy, = thickness of the landing slab

_(DrY’
5—(07)

Table 3.11. Coefficients for the determination of bending moments of staircases with three sides of the landing slabs
supported.

—qLL? qLL?

X|= —3 mpy=—01

mxi mpim
B Lpy/L3 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0
1.0 my 20.5 30.5 68.3 —-179.0 —-35.9 —19.1 —12.71 —-9.31
Mmim 13.1 10.8 9.06 7.66 6.54 5.64 49 43
0.75 Myl 17.9 23.6 37.1 105.0 —99.2 -31.5 —18.0 -12.3
MLm 144 12.1 10.2 8.66 7.4 6.38 5.54 4.85
0.5 Myl 15.7 18.6 23.9 354 78.9 -208.0 —41.3 21.9
Mim 16.3 14.0 12.0 10.3 8.9 7.7 6.7 8.86
0.25 my1 13.7 14.9 16.6 19.2 23.6 31.9 53.0 2.05
Mmim 19.2 17.3 15.4 13.7 12.1 10.7 9.42 8.3

(DIN 1045)

Flexibility analysis of a free standing ‘scissors’ type staircase
Figure 3.20 shows a typical ‘scissors’ type staircase. Figure 3.20 also
indicates the deformation of the same staircase in plan.

The stair is idealised for the flexibility analysis. Various diagrams
for mo, m1 and m, are given in Figure 3.21. Various rotations ‘0’ and
displacements ‘w’ with subscripts are given in the same figure.

Determination of reactions and moments
The following generalised equations are derived by statics.
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Figure 3.20. Scissors type
free standing stairs. a) b)

ROALZ LP w,=8,. 1 * wr_82r
Og,——=4 Wor = Oor | ‘fj 11( 1 9774 ’
I pr 1 L 1 py = Dp 2r
) o a) my diagram b) m; diagram ¢) my diagram
F 3.21. Flexibil
dilfgrr:ms. ety X1=X=0 X1=0 X, =1
Reactions and moments
gL, Ly qpLptp
Rao=Py=—|1—— —_— 3.4
a0 =Po== ( L1) t5T (3.49)
2 2
‘ILLz Ly qPLp Ly
— 1 - == == 3.50
moB 5 < )T 1 (3.50)
q,L3 quf,
moL = —5—, MmMop=—5— 3.51)
8 8
L3 2 L4 L3
K00 = g, =2 + po=L2, Kpdor = gy, =22 + pg—22 3.52
pY0r = 4pp o P o0 po0r = 4pp w1 Py o ( )
H
R = T mip = R{Lp, forX;i=1 (3.53)
1
Ry = iR map = RoL,, for Xo =1 (3.54)
L3 L L3
Kpdyy = Ri=22, Kpbp = =22, Kpdy = Rp-2 (3.55)
w11 I w1
Where 61 and wy are rotations at I point.
Flexibility coefficients
fit =3 o + Ly mis + BR1(K 1) (3.56)

1 Lo 1
fiz= gamm(l +2myp) + ngmlezB +BR1(Kpd2r)  (3.57)



132 Structural analysis of staircases: Modern methods

P, =%RA kN/m

Figure 3.22. Reactions due
to load g, on landing.

fo= gm(l +map +m3p) + ngmZB
+ B(Kp92,) + BR2(K pd2,)
1 L, 1 Ly

310 = z——m1pmop + z——mpmMoL
3cosa 3cosa

1 1
+ ngmleOB + §me13m0p — BR1(Kpdor)

1 L, 1 L,
320 = -6-—m03(1 +map) + =—— (1 +map)moL
cos o 3cosa

1
+ 3 Lpmap(mop +mop) — B(Kpbar) — BR2(K pd2r)

where

-(31)
D
The flexibility matrix [ f] is written as:
[fn f12] {X1 } _ _{310]
fa f2 ]| X2 820
or
_ J22810 — f12820

fiifr = 2

The moment at B is written as:

_ _ fud20 — fi2d10
fiifa - fh

Mp = mop + X1m1B + Xom2p

The axial force N is written as:

X
Nps=+——, Npc=1=X;
cos

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

The load g, gives the following reactions as shown in Figure 3.22.

3.4 FLEXIBILITY METHOD FOR HELICAL STAIRS

3.4.1 Introduction

A number of analyses for helical staircases were given in Chapter 2.
Scordelis (1960a, b) developed an equation using the flexibility method
to evaluate redundants at the mid span of helical girders when they are
subjected to uniform loads. Results have been tabulated for the midspan
redundants of 510 different girders with rectangular cross-sections. The
variables are the horizontal angles, angle to slope and the width-depth
ratio of the cross-section. Torsional effects are included. In order to bring

uniformity to the text, some symbols have been changed.
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Figure 3.23. Geometry of
helicoidal girders.

3.4.2 Notation for the analysis

o = angle of slope

B = width

D = depth

8,0 = relative linear displacement of the x-axis due to a uniform load
of 1 kN per metre of horizontal projection with the redundants
equal to zero

8,0 = relative angular displacement about the x-axis due to a uniform
load of 1 kN per metre horizontal projection with the redundants

equal to zero

fxx = relative linear displacement in the direction of the x-axis due to
X, =1

frx = relative angular displacement about the x-axis due to X, =1

fror = relative linear displacement in the direction of the x-axis due to
X, =1

frr = relative angular displacement about the x-axis due to X, =1

R = radius centre line

2¢ = a horizontal angle

X, = a horizontal force along and in the direction of x-axis

X, = a moment acting about the x-axis

3.4.3 Basic analysis

Figures 3.23 and 3.24 give the layouts of the helical staircase with var-
ious parameters. The displacements of the redundants are written as:

Xxfxx + erxr = _8x0 (3-66)
Xx frx +Xr frr = =80 3.67)

Due to symmetry frx = fxr

a) Left hand helicoid b) Right hand helicoid
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Figure 3.24. Positive The value of 3,( is written as:

directions of redundants,

moments and torsion. +¢ +¢ +¢

Note: The moment vector msOer MsxmpQ

is shown with a double on — / EI dd) + f EI R d(b + / GJ R dd) (368)
arrowhead. Zo r Zo s o d

where m,q, myo are moments in ‘r’ and ‘s’ directions, and m;q in the ‘¢’
direction due to a uniform load of 1 kN/m of horizontal projections with
zero indeterminacy. If 6 is located at mid span, the following expressions
can be written:

myo = —R*(1 — cos 6) (3.69)
mso = —R%(6 — sin0) sin (3.70)
msg = —R?(0 — sin 6) cos (3.71)
myx, msx and m;, represent bending and torsional moments in the girder
due to X, = 1:

m,o = —R(0sinH) tan (3.72)
mgo = R(sin®) cos & +R (6 cos 6) sin o tan (3.73)
m;0 = —R(sin0) sin &« +R (B cos H) sin (3.74)
myy, mgr and m;, represent bending and torsional moment in the girder
dueto X, =1:

myyr = cos 0 (3.75)
mgr = sin 0 sin (3.76)
my, = sinBcos (3.77)

where EI, and EI; represent the bending stiffnesses about the r and
s axes, respectively, and G J; represents the torsional stiffnesses, I; =
K1BD?3, the following values are to be taken:

B/D O 1 2 4 6 8 10 12 14 16
K 0.1 015 0223 025 0295 031 032 0322 0325 0327




Flexibility method for helical stairs 135

Once X, and X, are evaluated from Equations (3.66) and (3.67) then
Equations (3.69) to (3.77) are used to find M,, M and M;. They are
given as:

M, =mpo+ Xampx + Xpmy, (3.78)
Ms; =mso + Xymsx + X,mgr (3.79)
Assuming that the helicoidal cantilever is fixed at the bottom and free

at the top, Scordelis (1960a, b) developed the following expression for
the displacements at the top:

R4t 1
aw:_a;j‘_sec_“[smq,_q,cow_gb]
r
R* i
___seEcIo:smocE, cos
— [2¢cos o + (¢* — 2)sin¢ — D tanasin a] (3.80)
R4sina[ )
3 - sin$ — 3¢ cos
G, B3 —9¢7)sind —3dpcosd
3 2
_§+§smz¢—"’czS d’]
5,0 = R4seca[9 sing + sin2¢] + R3 sinzaseccxf
EIL 2 4 EI; (3.81)
R3cosaf
GJ;
3 2 _ 2
Fon = R’ tan“ aseca E_d)cos 0}
El 4
R3 — 1—
SecoL[Hcoszohi——DsinZOL
Els 4 (3.82)
— 2
+ |:F+ ¢CT (b]tanzasinza]
R3secasinfa(— 1= [= b cos2d
————{H—-D Fsin2
t TGy, l 4+[ SIn2¢ +—3 ]]
Rseco— RsecasinPa— R coso—
= G H H 3.83
fr="F, °t &L, "t oy 589
RZsecatano—
= =—-—-————D
Jrx = far EL
RZsi — -
+M[Hcosa+Dtanusina]
EI
R%sina

— 1
GT, [—H + §(D):| (3.84)
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where

D = (sin2¢ — 2¢ cos 2¢)
E = [? —sind + pcosd — szd)]

2 4
. ¢3 ¢2
F=— —_— = 2
6+<4 2 sin2¢
— ¢ sin2¢
G=-—-
2+ 4
ﬁzg_sinmb
2 4

Scordelis (1960a, b) gives results in terms of X,/R? X./R, M,/R?,
Mg/R?, and M,/R? for various values of ¢ ranging from O deg to
300 deg. Based on these equations, the author extended the results up
to 360 deg. They are given in Figures 3.24 to 3.28 for various values of
B/D and o. The load is assumed to be 1 kN/m. When the total load
due to dead and imposed loads is known, the values from these figures
are modified by multiplying respective values such as X,/ R? etc. by
that load.

0.6

0.4

02

-1.20

..;/

-1.60 b=16

Figure 3.25. Values of ' B

maximum bending 22 D= 1*%\
moment. M, for girders of ) 4

various horizontal angles ¢. 0 30 90 150 210 270 300 330 360
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Figure 3.28. Horizontal
angle values of maximum EXAMPLE 3.10

bending moment M;. Analyse the helical staircase using the flexibility method and the following data:
B/Dy =16
G/E =0.7
x =30
w = uniform load = 5.205 kN/m

¢ =010 270

SOLUTION
Flexibility of analysing helical staircase

The above values are based on the load with a magnitude of 1 kN/m. For a common
dead and imposed load of 5.205 kN/m the above values in the table in brackets are
arrived at using the above figures multiplied by 5.205 kN/m.

For example, when R = 25 m and ¢ = 90 and w = 5.205 kN/m

M,/R?*=0.781 M, = (25)> x 0.781 = 488.125 kN/m
M,/R? =6.767 M, = (25) x 6.767 = 4229.375 kN/m
M;/R*=0.052 M; = (25)% x 0.052 = 32.5 kN/m

¢ 30° 90° 120° 150° 180° 210° 240° 270°
Xx/R 0.78 1.0 1.0 1.17 1.56 1.40 1.18 0.6

(4.06) (5.205) (5.205) (6.089) (8.12) (7.287) (6.142) (3.123)
X,/R? 0.04 0 -0.07 -0.20 —0.45 —0.88 -1.30 ~1.65

(0.208) ©) (—0.365) (—1.041) (—2.343) (—4.580) (—6.767) (8.588)
M,/R? 0 0.15 0.5 0.88 1.50 2.45 3.10 25

©) (0.781) (2.603) (4.580) (7.81) (12.753) (16.136) (13.013)
My/R>  (0) 1.30 1.40 1.60 1.80 1.85 1.90 1.70

0 (6.767) (7.287) (8.328) (9.369 (9.629) (9.890) (8.849)
M/R? 0 0.01 0.01 0.26 0.50 1.40 2.65 3.80

©) (0.052) (0.052) (1.354) (2.603) (7.287) (6.897) (19.78)
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Figure 3.29. M,/R?
versus ¢.
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3.5 MEMBRANE PLATE/SHELL ANALYSIS

3.5.1 Introduction

Helical stairs can be treated as a plate or shell and hence a membrane
theory can be considered for computing forces. A simple method would
be to assume that they are axisymmetric. A polar co-ordinate system is
then adopted. Figure 3.30(a) shows a helical staircase and Figure 3.30(b)

shows the usual forces on interior and exterior surfaces.

3.5.2 Notation for the analysis

rs = radius to the outside of the stairs

rr = prs = radius to the inside of the stairs
B = Bry = width of the stairs

§ =r/rs = parameter

H = overall height

Parameters, k = H/2nrs, 1 = \/;2 + k2
Y, = radius to the interior = rs(1 + p)/2
Ng¢, N, and N,y = forces as shown on surfaces

u, v, w = displacements in ¢, » and normal directions
qr = load per unit area
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Figure 3.30. Helical stair . . . . .
mgmbrane analysis. a) Helical stair plan and elevation b) Forces on helical stairs

3.5.3 Basic analysis

The equilibrium equations are summarised for an element of the stair

surfaces:
2K [ Nyy
?< &2 ) Far=0

d(N,y82
Eza;\;d)wLn ( agg ) =0

(3.85)
O(nNy)  ONyy &
— =Ny =0
TR

The forces acting on the stair are written as:

EDs /10

ts nad F
Ed
N =22 (3.86)
rs ¢
ED;s (du 1ou 2
ST PELE 3
2re \9§ ndp 1

where E is the Young’s modulus and Dy is the stair thickness.
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The following equations for displacements can then easily be derived:

_ a0 o I_
u=- 48ED 3 co [Ef(*é) (E 1)]

24ED k

2
q07, -
= S6ED, 12" (&)

conf ()

2 8 92
X 121 f(§)+§n 3—22—?(1+26)
20f

k2
-—¢2[k?f@>+-&1 g T4 <s4—55)}}]

where the function f () and ¢ are defined as:

1 1 1++/14+k2
@ =4—&~ Tk + 2001 +p) — K] In
Uy M E+m
_ p2(1 +20)
Cc = 1 B
In- — 8(6 + 3B + 2p?) (3.88)
p
_ 14+ 2p
- 1 1 1
2
1+ -4+ 4+—4...
B < sttt )
where In = natural log.
Using Eq. (3.46), the forces are written as:
q0ts _ 1
Ny = -1
o= Tgwn(3-1)
.
,= IO et p(14p)] (3.89)
12k
2
4907 p
Ny = 3—-26——=(1+42
T [ A+ B)]

For § = 1, u and v are zero and for § = p, the new values of N, and
Ny from Eq. (3.89) are calculated. Putting Eq. (3.89) into Eq. (3.85),
then expression for ‘g’ is derived.

3 2 p?
uMWL=%{§—g—%U+%4 (3.90)

N (total) considering top and bottom:

Ny = — ‘63 (3.91)

18k
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The horizontal and vertical components of Ny are:

q07s _

Non = 1-— .92
oh = "o=cd(l1 —§) (3.92)
qors_, {1
Nyv = -—1 3.93
oV = "or C¢(E ) (3.93)
and their respective total values are given below:
2
q07s _ 2
N = 3.94
dhtotal = —72-CoP (3.94)
62
Foy = —_l_rs (3.95)
2<1n - — B)
P
r2_ 1
Nyviotal = ‘106s C¢0(ln; - 5) (3.96)

Helical stairs having sectors subtended 2¢y in plan.
For a sector of 2¢ in plan (see Fig. 3.30) of the helical stairs, Equa-
tions (3.89) and (3.91) are modified.

qors _ 1
Ny = — gkscdnl(g - 1)

qors _¢
=12 cﬁ[’r;2 — 25+ p(1 +B)] (3.97)
2
_qofs_ _ _ P__
Ny = 36kc[3 2% - 50 +2s)]

EXAMPLE 3.11

Using the following data, calculate the geometrical parameters and the forces in a
helical staircase made of reinforced concrete.

The helical staircase plan is shown in Figure 3.31.

Data
H=3m
n =17

h1 = height of the step = 0.1765
G =going=03m

General
rs=3m B=15m rr=15m
rm=225m qo = 9.49 kN/m? (vertical load)
C = 18.9 exterior ¢ = 56.8 interior

(respective factors times dead + imposed)
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Figure 3.31. Helical stairs
in plan with total
suspended angle 2¢y.

SOLUTION
Plate/shell analysis using membrane theory for a helical staircase.

Parameters:

2¢qg = total angle subtended in plan

b = 65°

180 180
H=—2H;=—x3=283

d)() I 65 X m
for stair slope tana = 30 _ 0.59
P TTTx03 "
cosa = 0.86
Outside of the stair
B

o="1_05 p=2_05 k=" 04

rs rs 21rs

n= 52+ k2 = \/E2 +0.194
Adopting Eq. (3.97)

Np = 7.15q0rs 4/ €2 +0.194(é - 1) ]

N, = —3.58qu5#(§2 ~26+0.75) | Range 0.5 <& < 1.0
VE2+0.194

1
Ny = —1.199qpr;s (3 — 28— —)

2e2 i
fort =p=0.5
Ny = —4.76qpr;¢  where ¢ is a particular value of ¢g
N, =0
Nrp=0
a® = 10500 535~ 55 ~ 5557 ) = 0 =0
for £ = 0.75

Ny = 2.88q0r5¢
Ny = —~0.775qgrs ¢
Nry = +0.725qors
gL(§) = 1.1445qg
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for outside ry = 3.0 m
go = 9.49 kN/m?
¢ = o = 65°
forE=1.0
Ng = (0)(gors$) = 0
N, = —0.820g¢rs ¢
Nry = +0.60qprs
qL(§) = 0.525q¢

_qoB* _ qoB*}

o _9.49(1.5)2
- 2

32

32

Nrd:ototal = —-255kN N¢rtotal = 87.0 kN
N[O[a] = 590 kN N¢hmm] = 87.0 kN

For the inside of the stair

s

| -

Ny = 10.76g0r5 1/ £2 + 0.775 (E ~ 1)

Ny = 5.38g0r ——2
JVE2+0.775

4
Ny = 1.79qrs (3 -2t + g‘i)

(£2 —28)

3 2 4
q) = 3~15f10<§—2‘ - %'5 + 'Ej)

E=1
Ny =0
Ny =4.04 x (qors¢)
Nry = —8.95q¢r
q(§) = —4.75q0

=2
Ny = —11.85q¢rs ¢
N, =0
Nyp=0

q(§) = 1090

These results are left in r;¢ and gg. All other values can be interpolated. The plate
bending, if any, can be computed from a general equation.

= 0.67 kNm/m

rs=15m B=-150m, r,=30m, p=—=-—=20
rs 1.
B
B=—=—1 k=088 n=+£2+0775 ¢=568

Range 1 < £ <2
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3.5.4 Helical stairs with torsion included using the flexibility method
of analysis

Table 3.12 gives a general analysis of an element of the helical staircase
under bending, shear and torsion. This analysis acts as the basis of the
proposed flexibility method of analysis.

The general [ f;;]; including torsion is written as:

1 MyiMyj | MziMzj MMy Vyi Vyj
Uile = ;[ El, EI GI, "™ Ga |
v mems (3.98)
zi Vzj inj
—|d
T T Ea ]
In pure bending, the first three terms of Eq. (3.98) apply
MmyiMy0  MgziMmzy Mg
Bioke=)_ | + ds
—— —— 3.100
TGa T Ga T EA (-100
d
ds = ﬂ (reference Table 3.12) (3.101)

cosa

Where Iy, I, I; are along respective axes and where there are x param-
eters for shear such as a shape factor:

I,1
Glp = 2E-—2-% 3.102
T T +1, ( )

cosaFE]
[fijl= —r—y[f,-,-]g (3.103)

For a pure bending case Eq. (3.103) can be expressed as:

I 1 I
Z 4

When a redundant X; = 0, only loading exists

myo = f(¢)

¢
o = sina[f’(cb) 4r2 / a d¢}
0 (3.105)

¢
myo = —Cosa[f'(dﬁ +r2/qL d¢:|
0
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my1 =0, my4 = sin ¢
mz =1, M4 = sino cos ¢
m;1 =0, M4 = —COSAUCOS P
my =0, mys = tanad sin d
mzp = cos? a, m,s = —(sina tanad cos a (3.106)
m;y = sinacos a, + cosasin ¢)
my3 = tanad cos ¢, mys = sina(¢p cos ¢ — sin ¢)
m,3 = —(sina tanad sin ¢ Mmyg = COS ¢
—cosacos ¢ M,e = —sinasin ¢

m;3 = sina(psind +cosd), mse = cosasind

Table 3.12. Basic analysis for helical stairs.

Figure (a) shows an elevation and a plan for a helical staircase with a sectoral plan.
Figure (b) gives the position of forces on an element. This is modified by including load w and other components in
Figure b).2 and Figure b). 3.

Figure (a). Helical stair — elevation and plan.

b). 2 {3,

—ﬁy m mz qLr d(l)

rtan o do

Tytdm,

i+ dm, 9%

|5, + d,

Figure (b). Forces on the stair element.
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Table 3.12 (cont.).
General equations
Moments, shears and axial loads
=rncosu— v-sina, n=Tvsina+ 7 cosa
Ty = Uy, Uy = Uy
V- = nsinav; cosa, v, = v cosa —nsina A)
Wy = mycosa —m;sina,  m; = mysina 4 m; cosa
my =y, my =my
M. = m;sina 4+ m-cosa, m; =mzcosa — m;sina
Equilibrium equations
The following equations can easily be derived:
Forces:
_ 0vy .
n+—=20 radial
0
on B
,l -7, =0 tangential ®)
ad
+ 0 vertical
— = vertical
qLr PP
_ . o, .
moments; rv, — rtanan —in, = W radial
_ o 9m .
qLre + rtanavy — W +my =0 tangential ©)
P
rvy + ﬂ =0 vertical
) 30
The values T, n and 7 can now be computed using the following equations derived from Equations (B) and (C).
Note: ¥, a redundant values = X introduced in the flexibility analysis
1
Uy = —{(x5c08 b + x3sind)
) N
_ [
V. =—r | qrdd — —sinax
r
0
|
= —(x5s8ind + x3 cos ¢) (D)
r
my = xgsina 4 xg cos ¢ + tana(xzdpcos ¢ — xsdpsin o) + f(x)
. = cosa(x] + x3) — xs5sin$ + x3 cos
b
m, = —r? / qr do — x4 c05 b + xgsind — sinax; — f'(¢p) + tana(x3d sind + xs5¢ cos ¢)
0
The value f(¢) when determined from differentiation is given as
SO+ f(@) =qLr(r +e) E)
When ¢ = 0 in Eq. (D), the forces and moments in the helical staircase can be written as:
1 _
vy (0) = ~xs, my () = f(0) + x¢
’
|
V- (0) = ——sinaxy, m (0) = cosalx; +x2) +x3 3]
-

|
7(0) = ——x3, m(0) = —xq4 +sinax; — f/(0)
-

where x’s are indeterminacies as X in the main flexibility analysis.
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Table 3.12 (cont.).

Substituting Eq. (A) into Eq. (D), the following values are obtained:

1
vy = -—(x5 cos & + x3 sin ¢)

1
=-r cosa/ qr do — - smacosaxl - = sma(xs sin ¢ — x3 cos ¢)
0

1 1
n=-r sma/qL d¢ — —s1n2ax1 + — cos a(xs sin & — x3 cos ¢)
r r
0

my = f($) + tana(xzdcos ¢ — x5 sin d) + x4 sin d + xg cos ¢ ()

]
m; = sino{f’(d)) +r2/qL dd + x4 cos & — xg sin ¢ —tana(x3<|>sin¢+x5¢cos¢)i|

0
—cosafxssind — x3cos §) + x1 + x3 cosZa
)
my=— cosa[f’(cb) + 72 / gL dd — sina(x2) + x4 cos ¢ — xg sin ¢]
1]

+sina[x3¢ sin ¢ + x5¢ cos ¢ + x3 cos ¢ — x5 sin $]
When one edge is fixed and the other free as shown in Figure (c) Eq. (F) can be written as:

X]=x2=x3=x5=0

x4 = —f'(0)
x6 = —f(0) (H)
9L = B(gk + qx) = w

B B
re=r+e=§r2_ri2=r+m
f() = —qr ke and f'(¢)=0 @
ke=1+; )

Using Equations (H) to (J) and substituting Eq. (G) into (J), the following equations are finally derived:

vy =0

vy = —qrr cosa(d) )
n = —qrrsina(¢)

my = —quzke(l —cos ¢)

m; = qu2 sinoa(d — ke sin §) K1)

my = qu2 cosa(dp — kesin ¢)
Linear relation
¢=2ZB
960 — 4L
qr(d) = qro + q)tle) =k + ko

F(®) = —(ky + kodp)rke
F1(®) = —korke

(5]
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Table 3.12 (cont.).

Equation (L) is substituted into Eq. (G) for the additional values.

Figure (c). Dimensional parameters.

The values of various moments can be computed between —¢ to
+¢g. Various flexibility coefficients are evaluated using Table 3.13.

fi1 =28

fi2 = 28 cos® adg

fiz = 26’[cos a sin ¢g + sin o tan a(dg cos Gy — sin ¢0)] . (3.107)
f1a = 2P’ sinasin ¢y

fis=fie=0

fa = cos>a2F — 14+ 3p)dg

f23 = cosa[(2F — 14 2p')(2sin ¢y — g cos dg) + B'dg cos o]
fas = —sinacos®a(l — B') sin ¢y

Jf2s =0= f2

f33 = tan? al:%(Z — F)¢3 + %—Fd)(z) sin2¢q
+ %(2 — 3 f — 2B)(sin 2 — 2 cos 2¢0)]
+ %(2? — 14 38)) 24 + sin 20)

S35 = fr6=0
Jas = fa6 =0

faa= % tan a[f(sin 260 — 26 08 2bp)
—2(1— F — )29 +sin2¢9) |

— 1—
faa = 2= F)$g — 5Fsin2¢0
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fss = tan® al:%(Z — f)d)g - %754)(2) sin 2¢y
— %(2 —3F —28/)(sin2¢g — 2¢ cos 2¢0)J

+ 7GF — 14+ 38) Qb0 — sin200)

— 1—
Je6 = (2= F)¢o + 7 F sin2¢p
1 —
fs6 = -2 tana[2(1 — F — ') (2 — sin2¢)

+ F(sin 2¢q — 2¢g cos 2¢p) |

where
p =L
I

Table 3.13. Tabulated values of ¢’s versus 6’s versus M’s.

8y =0 8y =1/3 y =
—d —0.250 —0.200 0.500 M,/ (wr?)
(~10.8) (—8.76) (21.6)
—do/2 0.045 0.050 0.120
(1.944) (2.16) (5.184)
0 ~0.110 —0.158 —0.230
(—4.752) (—6.83) (=9.94)
+¢o/2 0.045 0.050 0.100
(1.944) (2.16) (432)
+¢g —-0.30 -0.20 0.000
(—12.96) (—8.76) (0
-~y 1.200 —1.250 —1.300 M, /(wr?)
(=5.184) (=54) (—56.16)
—bg/2 -1.250 -1.250 -1.300
(=54) (—~54) (56.16)
0 0.000 0.000 0.000
0) 0 (0)
+do/2 1.250 1.250 1.400
(54) (54) (60.48)
+dg 1.200 1.250 1.400
(57.84) (54) (60.48)
—dg —-0.055 —0.125 —0.200 M,/ (wr?)
(—2.376) (—54) (-8.76)
—dg/2 0.035 -0.010 0.025
(-1.512) (—0.432) (1.08)
0 0.000 0.000 0.000
(U] ) 0
+¢g/2 8.035 0.010 —0.025
(1.512) (0.432) (—1.08)
+g 0.055 0.125 0.180
(—2.376) (54) (7.78)

wr? =432 kKNm.



Membrane plate/shell analysis 151

F = <l - %COSZOL>(1 -B

Similarly

+dp

1
djo = Z [myjmyo + Bmgimyo + 5(1 + B)mtjmtO:l do

—0g

Hence six equations are written and solved

Siixt + fizxa 4+ fiexe +310=0
Ja1x1 + faoxo 4+ - fagxe + 320 =0

Je1x1 + feaxa + -+ feexe +d60 =0

The symmetric and un-symmetric matrices are written as:

symmetric
Si1 o iz
far fo
31 fn
fau Jfa

un-symmetric

J

Jfss  fs6
Jes  fe6

load w = qr = B(gk + gx) = constant
f(®) = —qLr’ke and f'(¢) =0

where
e B2
ro 12r2

f13
f23
f33
Ja3

e
ke:(l—l——)
,

2
myo = —qrr-ke

myo = qrr?sina(d)

x5
X6

fia
S
S34
faa

-

Since f(—¢) as functions

mg = —qrr? cos a(d)

010 =820 =330 = 340 =0

850 = 2qLr” tana[(3 + ke — 3F — B') (sin g — g cos dg)
— (1 = F)¢f sin o]

860 = Zquz[(l — F)dg cos dg — (1 + ke — F) sin ¢g |

xi
x2
x3
x4

350
360

H

310
320
330
840

(3.108)

(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

(a)
(b)
(c)(3.114)
(d)
(e

)
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Figure 3.32. Demonstration
of helical stairs

of moments, shear and
axial effects.

Figure 3.33. A helical
staircase in plan.

If

— X p— X
Xs=—2, Xo=—>
qLr qLr

then moments are written as: shears and axial thursts due to vertical
loads as

vy = qrrXscosd (a)

v, = —qrr(cosad + Xssinasin ) (b)

n = —qrr(sinap — X5 cosasin¢) (©)

my = —quz(ke + X5 tan a(¢ sin ) — X cos ¢) G))

m; = —quz[(75 cosa + X sina) sin ¢ — sin od (3.115)
+ Xssinatana(d cos d))] (e)

m; = —-quz[(Y5 sina — X cos a) sin¢ + cosad

~ Xssina(pcos )] ()

These moments, shear and axial effects are also shown in Figure 3.32.
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EXAMPLE 3.12
A helical stairs with 240° sector in plan is shown in Figure 3.33. Using the following
parameters, determine the shears and axial load for the stairs:

2H, =35m
RC slab thickness = Dy = 150 mm
n =21
Slab width =B=15m
hy =0.1667 m
ri =r=15m
G =0.2992 m
I'm =225m
29 = 240°
1.4g; = characteristic imposed load = 7.80 kN/m?
1.64 = characteristic imposed load = 5.00 kN/m?
qL = 12.80 kN/m?
w = BqyL
qr =1.5 x 12.80 = 19.2 kN/m?
SOLUTION

A helical stair with 240°: sector in plan

Parameters:
I Ds\?  [0.15)\?
p=2=(ZL) =(==) =001
I B 1.50
0.1667
-1 o
= rr———— =2
o= tan (0.2992> o
sina = 0.448
cosa = 0.874

tano = 0.557

F= [1 - %(0.874)2(1.0 - 0.01):' = 0.612

_1+@1.5?
T o12(1.5)2

flexibility coefficients:

= 1.083

f55 = 1.9866 + 2.04126,
fs6 = —(0.6368 — 1.01036,)
fos = 2.6420 + 0.56,

850 = (3.1258 + 2.18820,) g r*
360 = —(3.3606 — 1.083)g..r>
for grr=1

6.1184 + 11.42900,
4.8431 + 7.67298,

Xs =
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— 46857 +6.47286,
6~ 48431+ 7.67299,

Ly=35m, 0,=6

then

EILL\L 1
p={ "2 )ZLcosa=-
Elz Or 3

substituting into X5 and Xg equations

| E—
f0r6y=§ Xs=-1341 X¢=0.925

for 6, =0 Xs5=—1.261 X =0.968

for 6y =00 Xs=—1.490 X¢=0.844
for various values of 8 against the values of 6, = 0, !/3 and oo, the partial factor for
My/(wrz), Mz/(wrz) and M;/(wrz) can be evaluated easily using the basic theory
described earlier.

Similarly the values of Vy/(wr), V:/(wr), Ni/(wr) can be determined and they
are given in Table 3.14.

For example, the value for wr = 19.2 x 1.5 = 28.8 kN and wr? =19.2 x (1.5)2 =
43.2 kN. The values in the above tables are modified and are written in brackets.
Bending moments and shear forces and axial thrusts are drawn for 2¢ = 240°. They
will show where and how much reinforcement is required.

Table 3.14. Numerical values of V;/wr for various ¢’s.

—bo —bo/2 0 +00/2 +bo

0.671 —0.671 —1.346 —0.671 0.671 Vy/wr = values
(19.3) (—19.3) (—38.77) (—-19.3) (19.3) wr = 28.8 kN
1.266 0.351 0 —0.351 —1.266 V./wr = values
(36.96) (10.12) ) (—10.12) (—36.46) wr = 28.8 kN
2.033 1.524 0 -1.524 —2.033 N/wr = values
(58.55) (43.90) © (—43.90) (—58.55) wr = 28.8 kN

3.5.5 Helical stairs with a horseshoe shape in plan

A typical helical staircase has been analysed with a sectoral shape in
plan. This work is extended by extending the edges by an inclined length
L to form a horseshoe which is shown in Figure 3.34. All symbols are

consistent with the previous analyses.
It is assumed that one edge at the support is fixed.

vyo =0 (a)
v;0 = —qr cosad (b)
ng = —qrsina ©
myo = —qr? sinke(l — cos ¢) (d) (3.116)
My = —qrsina(¢ — ke sin d) ©)
My = —qrcos a(p — ke sin ¢) )
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a) Elevation

Figure 3.34. A horseshoe
type helical stair.

b) Plan

c¢) Parameters

Equation (G) in Table 3.12 is invoked when X5 = 1 and X¢ =1

Xs5=1
Uys = —COS &
r
v,5 = ——sinasin ¢
r

1 .
ns = —cosasind
r

mys = —tana¢ sin ¢

m,s = —(cosasin ¢ + tana sinad cos §)
m,5 = —sina(sind — ¢ cos ¢)

Xe=1

Vyg = Vz6 = he =0
myg = COS ¢

mze = —sinasin
m;g = cosasin¢

(a)
(b)

(c) (3.116a)

(d)
(e)
(®)

(a)
(b)
(c) (3.116b)
(d)

Where the value of the load ¢; is included for upper and lower extended

posts of length L of the horseshoe and ¢ = ¢.

vy =0
v20 = F[qrr cosadg + gy cos a(x)]
no = +qrrsina(dg) + g sina(x)

2 dg x*
myg = —qrr-|ke(l1 —cosdg) + —x | —¢q
’ r

mao = £qrr? sina[dg — ke sin dg)

mo = :|:qu2 cosa[dy — ke sin ¢l

(@
(b)
(©)

(@ (3.117)

(e)
(f)
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X5=1
1

v = - cos o (@)

1
Vz5 = F— sina sin ¢ (b)

r

1
ns = £~ cos o sin ¢ ©

r

1
mys = — tan adq sin ¢g — — sin a sin Py (x) (d) (3.118)
r
) sin® a cos ¢
mz5 = F| cosasindg + dg cos &g + (x)] ©)
cos o F COS Ol

mss = Fsina(sin gy — g cos dg) ®
Xe=1
Vys = V6 =ne =0 ()
mye = €OS Pg (b)
mze = Fsinasin ¢ (c) (3.118a)
ms6 = = cos asin ¢ (d)

Again writing the generalised equations for moments where the extended
parts of length ‘L’ are included

MyiMyj — MziMgzj MMy
= ds 3.119
fi /[ El, + EI LT ] .119)

For the two limits of ¢ =0to ¢gand x =1to L

I, 1 I
8ij = myimy; + Zmymgi + ~( 1+ = Jmumj |dd (3.120)
I 2 I

b=
i I 1 I dx
+ / myimyj + Zmzmzj + = 14+ 2 Jmymy; |— (3121
IZ 2 Iz r
x=0
where
2EIyl
Gl = ==YZ
Iy + 1)

All other coefficients can be determined easily using a normal procedure.
The complicated ones such as fs5, f56, f66, 050, d60 Need to be evaluated.
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It is important to note that as usual p = I,,/I; and p = L/r:

1
fss =ay tan® o + %B sin20L(pa‘22 + a3z — 2a5 + ag)
02
+p tan® o sin® Lol [¢0(¢0 +p) + 3 cos? a]
2 2 2 2
+ Bl:cos aaz + as(2sin“ a) + ag sin“ atan” a

+ o( cos® asin® ¢g -+ sin? o tan® a(¢3 + sin g cos b))

+ p2 cos d)o( sin g + tan? a(dg cos ¢0))

4P cos? 4)0]

3 cos2a

(3.122)

1
fs6 = —astanq — P sin 2a(pay sin ¢y + a3z — as)

— g tan a sin 2¢y <¢0 + g cos oc)

+ 6sina|:(a3 + tan® as) cos o 4 pcos o sin ¢

x (sin o + tan® a(dg cos dg) + pcosf’ 0)] (3.122a)
2cos“a

cos® a(a3 +p sin? <1>0) +p cos® o)

1+8
fs6 = aa +

+ B sin® a(az + psin® ¢g) (3.122b)

.

k
ke(ap — as)tana + p2 sina sin d)O[—zst + sIV]
0 =qLr*] + p tan adyg sin ¢y [sI + sm] {

1+
L 1+8

sin 2a[a2 —ag + pazsII + ke(as — a3)] ‘

— qu2 sin oa|: cosafay — keas) + sina tan a(ag — keas)

I ) sin?
+ ps™| cosasindg +

CcoS
v dg cos Pg

4 Reos ¢°>] (3.123)

2cosa
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cos? oc[a3 — keas + psin ¢0(sn)]

1
d60 = —61Lr2[kea1 + +P

+ pcos ¢y [ke(l — cos §g) + sm] }

— Bqr? sin? a[az — keas + psin ¢0(s“)] (3.124)
where,
1
a; = sindg — 5(4)0 + sin ¢q cos ¢p) (a)
az = sindg — g cos ¢y (b)
1
az = E(¢o — sin ¢ cos ¢g) (©
1
a4 =3 (g + sin g cos dg) (d)
1 1
as = 5($g sin” 9g) — 7 (¢o — sin oo cos ¢p) )
ag = ¢ sin dg — 2(sin by — g cos ¢g) (f)
ay = @ - dp—zsm(b cos ¢
6 ) 0 0
<¢0 sin® ¢ + = [d)o sin® ¢y — —(¢>o — sin ¢g cos ) }) (g
"’60 + 4’2 sin ¢ cos dg — —(¢o sin” )
1
- Z(d)o — sin g cos ¢g) (h)
st =1 — cos dy ®
= ¢o — kesindy ()
2
nm_q4 P P
= d)oz + 6 k)
2
_ o PP
= do3 + 3 M

The values of coefficients a; to ag have been (other values can be in-
terpolated) tabulated below in Table 3.15 after solving various integrals,
for various values of ¢;.

Similarly for the helical and horseshoe stairs, the following values are
derived.

In the lower and upper lengths L of the horseshoe
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Table 3.15. Parametric values.

bo aj a ay as as ag ay as
0 0 0 0 0 0 0 0 0
30 0.0217 0.0466 0.0453 0.4783 0.0428 0.0439 0.0073 0.0406
45 0.0644 0.1517 0.1427 0.6427 0.1250 0.1328 0.0515 0.1100
60 0.1259 0.3424 0.3071 0.7401 0.2392 0.2649 0.1932 0.1897
75 0.18064 0.6271 0.5295 0.7795 0.3459 0.4019 0.5055 0.2420
90 0.2146 1.0000 0.7854 0.7854 0.3927 0.4674 1.0387 0.2530
105 0.1746 1.4402 1.0413 0.7913 0.3343 0.3635 1.7799 0.2718
120 0.0353 1.9132 1.2637 0.8307 0.1536 —-0.0277 2.7395 0.5330
135 —0.2210 2.3732 1.4281 0.9281 —0.1250 —0.8208 3.4430 0.9170
150 —0.5925 2.7673 1.5255 1.0925 —0.4355 —2.1077 4.0390 1.9423

Plate 3.1. Helical staircase
in concrete with
wood/steel balustrade
(with compliments from
London Hilton Public
Relations Department).

Helical part

vy = qrrXscosd (a)
v, = —qrr| cosa(d) + Xssinasin¢] (b)
n = —qrr[sinap — Xscosasina] (c)

(3.125)

my = —quz[ke(l —cos )
+ Xstanadsind — X cos ¢| (d)
m; = qu2[ sina(p — ke sin¢)
— X5 cosa(sind + tan? ad cos §)
— Xesinasin¢] (e)
m; = —quz[ cos a(d — ke sin ¢)
+ X5 sina(sind — ¢ cos ¢)
— Xgcosasing] ()
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For the lengths of the length L of the horseshoe

vy = qLr X5 cos dyg (@)

v, = FqLr [ cosa(dg +M) + X5 — sinasin ¢0] (b)

n= r[ sina(dpg + 1) — X5 — cosasin (c)
Fqrr[sinaldo + M) — Xs o] (3.126)

my = _quz[ke<1 — c0s ) + boTl + %(ﬁ)2

+ X5 tan o sin dg(dg + T cos a) — X cos d>0] (d)
m; = +qrr? [ sin o(¢ — ke sin ¢g) — X sin o sin ¢

— X5 cos a( sin §g + tan? adg cos dy

4 o8 2¢0 ﬁ)] )
cosZa

m; = :,:quz[ cos a(pg — ke sin ¢g)
+ 75 sina(sin g — g cos ¢g)
— Xg cosasin ¢0] )

Note that for X = 850/qu2 etc.and W =x/L

X = 80/qLr*
For the interaction of the straight and curved parts, the modified values
of f* are written as:
f = fs5 + 20y tan? asin? dg(dg + p cos o)
+ 20, (sin ¢g + p cos Pg)>
+ 26, tan? a cos? dg(dg + p)°
fos = fs69y tanasin 2¢o(dg + p cos a)
+ 65 tana sin 2y (dg + p)
f6*6 = fe6 + 20y cos? g + 20x sin? 03
83 = 350 + 26qur2 tan o sin ¢g(Pg + p cos o)

2
X I:ke(l —cos ¢g) + pdg + %:I

— 20,gr? tana cos dg(dg + p) by — ke sin )
360 = %60 — 29qur2 cos dg

2
— 20,qLr? sin ¢g(dg — ke sin ¢g) (3.127)

2
X [ke(l — cos §p) + pdg + p_]
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for the purpose of tabulation

8*
= o
grr?
. (3.1272)
= e
qrr?

EXAMPLE 3.13: Analysis of a horseshoe helical staircase
A helical type horseshoe staircase is shown in Figure 3.35.
Using the following data, analyse this staircase for displacements, redundants, shear,
moments and axial thrusts.
Data

H =425m
2n =26, n = 13 one side of the horseshoe
h; =0.1635

G =03m, g =572 kN/m?
B =140 m, q; = 3.125 kN/m?

rp =05m

r =120m

dp = 105°

L =21G=78m

e =B%/12r

L =11’-_2Lﬂ=1.7m

Dy = stair slab thickness 0.16 m or 160 mm

SOLUTION

L =2nG=26x03=78m

w = 1.4g; + 1.69qx = 1.4 x 5.72 + 1.6 x 3.125 = 13 kKN/m?
Lapo = Sector AC=15x03=45

From sector of circle with 210° angle 4.45 (average Lopo = 4.4)

—-L 83—4.
L=Lt 2PO=78 44=1.7m

2 2
I Dr\?
B=-2 = (—f) = 0.0131
B

Figure 3.35. A helical type
horseshoe staircase.
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2

e B
e +r +122 3

r

L
=—=1417
-

ay =0.1745, a3 =1.4401, a3 =1.0412, a4=0.7912
as = 03343, ag=0.3635, a7 =1.7800, ag=02718
fss =3.486,  fse=—0.279, fes=1.809, B3s0=6.89gLr>
860 = 0.404g,r2

Looking at the moment for a single span staircase (My)
fas = 3.486 + 5.246(9,), fgs = —0.279 + 0.838(8y)
Sée = 1.809 + 0.134(8y), 83, = 6.898 + l6.203(€)y)qu2
8%, = 0.404 + 2.589(8,)qLr?

for qu2 =1

7. _ ~12591-306186, o _ 3333 —9.8849,
5T 76228410425 ° %7 6228 + 10.4250,

8, =0, Xs5=-2.022 and Xg=—0.535

Xs=-2439 and Xg=—0.723

8y =00, X5=-2937 and Xg=—0.948

3.6 STIFFNESS METHOD

In this method the unknown involved is the displacement of the joints of
a particular staircase. There are essentially two principal ways in which
the equations of equilibrium, kinetmatics and elasticity can be combined
to lead to a set of equations in displacements. The two approaches are:
(a) the basic stiffness method by involving basic stiffness matrices of
members and (b) the direct stiffness method by involving the general
stiffness of members.

The common objective is finally to obtain the following set of equa-
tions:

{P} = [K]{3} (3.128)

where {P} are joint forces, {8} is the corresponding displacement and
[K] is the stiffness matrix.
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Figure 3.36. Reference
coordinate systems.

3.6.1 Basic stiffness method

The Eq. (3.128) can be expressed as equations of equilibrium in terms
of joint displacements.

P1 1}211 11212 /;13 e iln 21
19:2 ~| 21 koo koz ... ko .2 (3.129)
Pn knl kn2 kn3 voo kpn dn

The coefficients k11 etc are obtained in terms of the basic stiffness [K] of
members. The deformation of members is related to the displacement of
the joints of the staircase(s) members. Having solved for displacements,
it becomes easier to compute the internal forces for each member of
component of the staircase.

Member deformation
The deformed shape of a member can be evaluated by (b) the beam
model

(1) In the beam model, the rigid body motion under consideration
(Fig. 3.35) involves a rotation v, — v1/L and a translation u#; and u,.
The member deformations are obtained by subtracting the rigid body
effects.

v2 — V]

by =901 — L > rigid body
vy — V1
by =06 — ——
axial elongation e = uy — u;
(i1) In the cantilever model, the rigid body displacements of a staircase

member (Fig. 3.36) involves a translation #1, u; and a rotation 6;. The
deformation relative to end ‘1’ being fixed can be expressed as:

(3.130)

Chord rotation < )
displacements

L

v =wvy —v; — L6; at end 2 in a tranverse direction (3.131)
¢ =16, —6;
e=1uy—up
These two models correspond exactly to the member forces which are

defined as a set of independent forces for a member. The cantilever model
is relatively easier. The beam displacements at end 2 can be obtained

y y
n
) - N &
v\ K .
S e .
a) Local system b) Reference system
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when the proportion of x of the beam is assumed to act as a rigid body.

de = du
dv=xd6= d6= do (3.132)
Total deformation is obtained by summing over the entire beam.
L L L
= / du, v= /x de, ¢ = / do (3.133)
0 0 0
L L

o] = —— = fxde by =d / 1 o (3.134)

A DA '

0 0

—% = rotation at end 1 (3.134a)
¢ — % = rotation at end 2 (3.134b)

Typical stiffness coefficients and standard cases are given in Table 3.16.

3.6.2 Direct stiffness method

The slope deflection equation is in fact a direct stiffness method. First
the general stiffness matrices of various members are expressed in global
coordinates. The equations of equilibrium are written between internal
member forces in global coordinates and joint loads. A typical example
is given explaining various principles. The general stiffness matrix can
be expressed in terms of loads and displacements as:

prl _ kit ki2f|]wm
P2 kay kpa || u2 (3.135)
- p kij d

The k;; matrices (i, j = 1, 2) can be obtained in terms of kinematic
matrices of the member and the coordinate transformation matrix.

kij = T.ki; T = ATkA;

_ (3.136)
kij = AjkA;

The general ‘k;;’ matrix is given in Table 3.17.

3.6.3 Transformation technique

End actions and end displacements are generally defined with respect
to the local axes of the element (&, n) in two dimensions or (€, 1, ) in
three dimensions. If they are referred back to the global axes (x, y) or
(x, y, z) the relationship can easily be established between them and the
local axes. Assuming transformation is required for a two dimensional
case, in which Figure 3.36 shows axial forces P, shears V and bending
moments M on referred global axes x, y then the local values P, V and
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Table 3.16. Stiffness coefficients — standard cases.
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Table 3.17. k;; matrices — plane frame member.

ksc? + kys? (ks — k3)es —kys —(ksc? + k3s?) —(ks — k3)cs —kys
(ks — k3)cs k3c? + kss? kac — (ks — k3)cs —(k3c? + kss?) kac
—kys kac ki ks —ky4c ko
—(ksc? + kys?) —(ks — k3)cs k4 ksc? + k3s? (ks — k3)cs kss
—(ks — k3)cs —(k3c? + kss?) ~kqc (ks — k3)cs k3c? + kss? —ksc
—kgs —k4c ko k48 —k4c k3

ki =4EI/L; ko =2EI/L;

ks =12EI/L3, ks =6EI/L% ks=AE/L ¢ =cosc; s = sin

‘Mcan be related as:

P = pcosB —vsinb (3.137)
M=m (3.138)
V = psin® + vcosH (3.139)
In a matrix form

M 1 0 0 p

Pt=|0 cosd —sinb m (3.140)

vV 0 sin® cosO v

Considering a typical j position in the frame (Fig. 3.36) of an element,
the following relationship can be established

M|l r1o0 0 0 0 0 (ma
Py 0 cos® —sin6 0 O 0 Pb
V. 0O sin6 cos® 0 O 0 Ve
1 = ! 141
(1o o o 1 0 o |Ime[ GMD
P, 0 0 0 0 cosf® —sinb Pe
Vs [ 0 O 0 0 sin® cos® | Luvy ]
for the element ‘i’
{Me}i = [Teli{me}i (3.142)
where
(] [0]

T,| = 3.143
[7:] [[01 [t]],. (3.143)
Equation (3.145) is also the end transformation matrix
[Te] = [th (3.144)
The general displacement of the element is written as:

{Be}i = [Teli{de}i (3.145)

The inverse of the element transformation matrix is equal to the transpose
of the matrix

)i = [T {3}, (3.146)
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Figure 3.37. Local and
reference systems.

Figure 3.38. Orientation of
axes — direction cosines.

In this case the transformation matrix will be orthogonal. Equation
(3.146) becomes

{8e)i = [T.17 {5} (3.147)

In Figure 3.37 a, b the direction cosines are first computed, followed by
the computation of end transformation [#]; and element transformation

[T.);

=" _ o5 (3.148)
L;

s=yil;i—&=sin6
1 0 O

=10 ¢ -—s (3.149)
0 s ¢

=

b) Reference system

y
R ,

yj __________
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[T.]; as in Eq. (3.133) where

Li = (i = )2 = (i — )2 (3.150)
since

{M.}; = [keli{dc}i (3.151)
Eq. (3.151) can be written as

[T1] {M.}; = keli[T.1] 3.} (3.152)

Pre-multiplying both sides by [7.]; and realising that [T,];[T.]l; = []
identity matrix

(M.}, = [Tedilkeli[T.]7 (8} (3.153)
[kror]; = the transformed total element stiffness matrix with dx is
written as:

[Te)i ke [Te]] (3.154)

Equation (3.146) is written in a generalised form as:

kaa kab kac kad kae ka f
]]zba ]]zbb I/zbc ]]zbd ibe I/?’ f

ca cb cc cd ce cf 3.1
kia kab kac kad kie kaf (3.155)
kea kep kec ked kee ke f
kfa kfp kfe kfa ke kyf

In terms of direction cosines, Eq. (3.146) is written as:

krorli =

krorli =

kaa —skg ckge kaa —skqf ckar
—skeq  CPkpp +5%kee  cskpp — cskee  —Skea  CPkpe + sPkey  cskpe — cskes
ckea  cskpp — cskee  $Tkpp + cZkee  ckea  cSkpe — csker 52kpe + czkcf
kaa —skqc ckqe kaa —skqr ckqf
—skfaq ckep + s2kf(; cskep — cskfe  —skga g + szkff cskee — cskyf
ckfq  cskep — cskyge 5Zkep + %k fe  Ckfa  cSkee —cskyy 52kee + 2k ff
(3.156)

3.6.4 Conceptual applications to staircases using the stiffness method

A typical staircase with certain loadings and the corresponding reference
coordinates with stress results is given in Figures 3.39 and 3.40. It is
assumed that nodal point (1) is fixed and nodal point (3) is simply
supported.

The staircase may have components with constant and variable cross-
sections and with components having different material properties across
the spans. Initially joint displacements at 1, 2, 3, and 4 are unrestrained
and those at 5 to 9 are restrained. A restrained structure is created by
artificially constraining joint 2 against rotation and translation and joint
3 against rotation. The reactions of the restrained structure of the original
staircase are denoted by Ry 4 with subscript N labels; the corresponding
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Figure 3.39. A staircase
system under loads.

Y 6
4/‘}5 3
E : 2
k
111
\ T9

Figure 3.40. Reference 8 %

coordinates and stress \

resultants. J 7

R,

AR TN
Py . . Rs
Mf 1*\’;3 i 1V3” TV?P#RG
o

Vit

<

P3\

Fl
M; Pg‘l

Figure 3.41. Free body and
strain restrained cases of
staircases.

\le E
=i

joint displacement and subscript R indicates reactions due to applied
load. Fixed end moments are represented by MFr;. These phenomena
are vividly explained in Figure 3.41. The fixed end moments Mp; are
in the end direction ad V¥ ' the end forces are in the x direction.
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Figure 3.42. Reaction of a
restrained staircase due to
unit joint displacements.

Fixed end forces in the Y-direction in VI{; i are due to shear. The
equilibrium equations in statical fashions of each joint are given below:

Ri{R=M"+ M2 =Ry, ReR = V% = —R¢
RR=P"4+Pf?—P,=-R), RMR=MI'=-F;
RsR = Vil 4+ vf2 = _Rs, RsR = Pf' = —Rg (3.157)
R4R = Mf? =Ry, RoR=Vy'=-Ro

RsR = Pf? =0= —Rs

&,
a) A restrained staircase

R IR Ry \R6 R,
R k‘ \ Ry ﬂes' \
2 ) i\.g/ Rs
Z
ey

k1= kgt

k91 = EM
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3.6.5 Stiffness values and reactions

Prior to the evaluation of unit values-reactions, it is important to know
the values of direction cosines ¢ and s for this staircase.

L h
Element l c = ———, § = ——u"
2 2 2 2
‘/(L1+h) ,/(L1+h) (3.158)
L
Element2c=—2=1, s=0
Ly

Various deformed diagrams for the reactions for various displacements
and rotations are shown in Figure 3.42 for restrained flights of staircases.

3.6.6 The stiffness matrix

lkror]1 = total stiffness matrix for element (1)

displacement at k-end  actions at j-end

E77 E78 E79 kn 75-72 E73
kg7 ksg Egg kg1 7<—82 83
_ | ko7 kog koo 1 koi ko ko3 (3.159)

b -

displacement at j-end actions at k-end

Similarly the components of the transformed element stiffness matrix
can be identified as the following for the elements (2)

action at j-end

kii kio=0 ki3 kia kis=0 kig
0 ko 0 0 kos 0
[krorls = Ky 0 kw ka0 ks (3.160)
ka 0 kg3 : kaa 0 kag
0 kso 0 : 0 kss 0
| kel 0 kez ke 0 kes |
displacement j-end displacement k-end

Tables 3.18 and 3.19 gives a complete picture of other types of deforma-
tion for the same restrained staircase while looking at appropriate unit
displacement and rotations against corresponding reactions, respectively.
The reactions can be summarised in Equations (3.161) and (3.162) while
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Table 3.18. Joint rotation and translation in X and Y directions joints 2-5.

a) A unit displacement at 2 (translation in X-direction)

r4=0

T94= 0

¢) A unit displacement at 3 (translation in Y-direction)

b) A unit displacement at 4 (rotation of joint 3)

kgs=0_
\T/kH: 0
kys=0

d) A unit displacement at 5 (translation of joint 3 in
X -direction)

considering:
-1 -2
k11 =ky1 + k17,
-1
k21 = k21,
-1 =2
k31 = k31 + k31,

)
kay = k14 = kyy,

ks1 = 0,
=2

ke1 = kg1,
=1

k71 = k71,

-1
kg1 = k81

—1
ko1 = ko1
)
k36 = ke3 = k3
-
k33 - k33 + k33

-2
k3g = k43 = k34

kag = Ei4
)

kas = ks
—2

kee = ke

(3.161)
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Table 3.19. Joint rotation and translation in X and Y directions joints 6-9.

_.\t/'k7s=°
kys=0

6

a) A unit displacement at 6 (translation of joint 3 in
Y -direction)

kyr= 7‘711
kyr= ke

b) A unit displacement at 7 (rotation of joint 1) d) A unit displacement at 9 (translation of joint 1 in
Y -direction)

[Kuu] . [Kur]

....................................................

0 ks, O O : kss O O O O (3.162)

0 kg7 kg kgo}x*
: 0 kg7 kog kog}x
[Krul [Krr]
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Figure 3.43. Identification
of components of support
reaction for original
structure of staircase.

ks1 = ke
=2

kea = keq
-2

kss = Kss

all other values marked by *{, }* are k = k~! with appropiate subscript.
The two reactions at supports acting on an indeterminate stair flight
must be checked.
For example,

Rz + k1181 + k1232 + -+ + k1919 (3.163)
Rz +kadg =0 (3.164)
Rsp +ksds5 = Rs (3.165)
right up to Ryz + ko181 + - - - + kg9d9 = Ry (3.166)

only the value R,z = My

Rg = horizontal force H
Rg = vertical reaction vg { at nodal point (1)
Rﬁ?- = M7 = moment

Rs = H = at nodal point (3) = Hs
R¢ = vertical reaction at nodal point (3) = vg

A reference is made to Figure 3.43 for various values of R, for the
support reactions.
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Support reactions

The following gives the complete picture of various actions on the
staircase.

Fl F2
g +FA241 — — r 81 3 ( O 3
P, ;Pz ;2P2 8 0
Vi + V.
S Kvu | Kug || 0
M; d4 0
4 5 | e | RN N P o
V2 : 36 Ve
M Kru KRrr 37 My
pF1 dg Vs
8 .
Fl L ‘ _ L 89 ) L H8 J
L V9 J

In general Eq. (3.167) is written as

[K1ror{d}ror = (P} + {R}ror
[K ]tor = total structure stiffness matrix
{d}roT = total joint displacement matrix

{P}J = total joint load matrix corresponding to P, unrestrained and P,
restrained of joint displacement, respectively
{R}ror = total support reaction matrix of the original structure

corresponding to the restrained component of joint displacement

u, r = unrestrained and restrained
f = final

Equation (3.150) can also be written as

s 8] 5 L)
K @ Ko LW Fr Rr

)
M; ) [ MF
f 0 F
V. 0 V.
) =[K 1 ' -+ E
d
f 2 PF
P2 \ 83 ) V2F
L V3f 3
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Figure 3.44. The resistance
will be opposite sign.

for element (2)

[ f‘
M 5 ) [ MF
f 1 F
sz 37 )
1% 5 vE
V21 =Klor, { o v 4+1 3ot
M/ 2] 3 MF
P/ 0 Py
5 |0 | A
v L Vs

EXAMPLE 3.14: A staircase analysis using stiffness method

A staircase shown in Figure 3.44 is fixed at A and C. The landing and the flight are
loaded as shown. Assume that all the loads on the steps, together with the weight of
the stairs, concentrate at the centroid. Use the following member properties:

M L (m) cosa sina EI/Ely r
AB(1) § 08 —06 125
BC(2) 4 1 0 8
Elqy/Elp =12.5/8 etc.

KIJEly K2/Ely K3/Ely K4/Ely KS/El
20 10 5 1.2 3 40
20 8 4 1.5 3 50

A2 23}

Landings

All loads

are imposed.
No dead weight
is included.

Im

4m

a)
036 4 g
450\ N1.0

6.4 b)
8\ 04.5

Note:
reactions kN
moments kN m
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SOLUTION

Reactions:

When all points A, B and C are fixed. From statics the load in members is given in

Figure 3.44(a) and (b).

Rct=-24kN Rp4=-89KkN
Hg =—-035kN M,=16kNm
Mp=30kNm R t=152kN

Hq =035kN >
k;j matrices (ref. Table 3.17)

MA =—-1.5kNm

ksc? + kys? = 40(0.64) + 1.2(0.36) = 26.032

kss® + k3c? = 15.168
(ks — k3)cs = —18.624
ke =3.0x08=24
kgs = —1.8

kij is written as

i 26.032 -—18.624 1.8
—18.624 15.168 2.4
1.8 24 10.0
kijlay =
—-26.032 18.624 —1.8
18.624 -15.168 -—-24
. 1.8 2.4 5.0

[kij] for A and B are then written as

[ 50.0 0 0 -50.0
0 1.5 3.0 0
0 3.0 8.0 0
kdo=1_s00 0 o0 50
0 -1.5 -3.0 0
0 30 40 0
Adding k22(1) and ku(z) and solving for {3}
up ] 0.183
B)=4vpg ¢t =—1{ 0743
og | EP | -0170
The member forces in stair and in landing
Ra upg
Via ¢ =[Kiype] § vB
M4 p
—26.032 18.624 1.8
=| 18.624 —15.168 2.4
-1.8 ~2.4 5.0 -0.170

0.183
0.743

—26.032 18.624 1.8 ]
18.624 —-15.168 2.4
-1.8 —-24 5.0
26.032 -18.624 -—1.8
-18.624 15.168 -2.4
-1.8 -24 10.0 |
0 0
-1.5 3.0
-3.0 4.0
0 0
1.5 =30
-3.0 8.0

8.80

kN
= { —8.30 kN
—3.00) kNm
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The other member forces are computed as:

Pra —8.80
Voa ¢ = 8.30 kN

Moa ~3.80
Pip 9.150
Vip } =1 0.610 } kN
Mz 0.900
Pap —9.140
Vop ¢ = { —0.610 } kN
Mjp 1.560
Superimposing all these
Pia 9.130
Via } ={ —9.800 } kN
Mia ~4.450

{P>4}T = [~9.140 1.800 0.710] kN
{Pi5}T = [9.140 1.800 —0.710] kN
{(P25}T =[~9.150 —3.010 3.160]

3.7 FINITE ELEMENT METHOD

3.7.1 Introduction

The two types of finite element analysis are: plate flexure analysis using
displacement polynomials and isoparametric finite element analysis.

Both methods are useful. If the reader is interested in evaluating
moments, shear and axial effects in two dimensions, the plate flexure
method is adopted. Where the reader wishes to carry out an in depth
study, the isoparametric finite element method is adopted which, apart
from stresses, strains, yielding and plasticity, also looks at cracks in three
directions and their propagation under ultimate loads.

3.7.2 Plate flexure analysis using finite element

The coordinates and the node numbering system can be defined for the
rectangular element. They are given in Figure 3.45. The dimensions of
the plate are a, b and ¢ (thickness) and the coordinates are (x, y, z) in
the cartesian coordinate system. The nodes 1 to 4 have their respective
rotations

0x1 to Ox4; nodal forces (Fyi, Fy1) to (Fya, Fy4) and displacements @
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Figure 3.45. The
rectangular finite element

for plate flex.

y i I
8)2(Fy2) 6
5 4 /’ﬁ_
b ! 0 (F) o
(F xl)exl ! !
7 * F)os V|
z )] )

In mathematical terms they are given as:

o = displacement = a1 + axx 4+ azy + a4x2 + asxy + a6y2
+ a7x3 + agxzy -+ agxy2 + a10y3 + a11x3y + a12xy3 (3.168)

oG dw
Oy =——, 6y,=— 1
x 3y y =5 (a) (3.169)
31 = (6x1, 051, ®1) (b)
Fxl
{F1} =1 Fn (3.170)
Fz
The nodal loads are related to displacements as:
{F} =[K]{3} (3.171)
where
T
{F}"—"[Fxl,Fy],le,---,Fx4,Fy4,Fz4] (3'172)
T
{3} = [exh eyl, Wel, - .-, Ox4, ey4’ 924]
where [K] is the stiffness matrix, elemental or global.
Now

0, = —5 = —(a3 + asx + 2agy + agx“ + 2a9xy + 3ajgy

+a11x’ + 3apxy?) (3.173)

o

0y = —5—(;)— = az + 2aax + asy + 3a7x2 + 2agxy + agy2

+3a11x3y+a12y3 (3.174)
for the edge 1-2 x = constant and equal to zero
® = ay + a3y + agy* + ajoy’ (3.175)
0x = —(a3 + 2a6y + 3aioy?) (3.176)

0y = az + asy + agy” + a1y’ (3.177)
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nodes 1 and 2, y = 0 at node 1

el
Il

wr=a 0y =01=-a3 6,=0y1=a
at y = b at node 2

® = ®) = aj + azb + agh® + ayph’

6y =0y = —(a3 + 2agb + 3a10b2)

0y = 0y2 = ax +asb + a9b2 + a12b3

The constants can be evaluated as:

B3, ) = [fex, »]ia) = [£(x, »]1ATT13)
where [ f(x, y)] is

[0 0 -1 0 —x =2y 0 —x2 —2xy =3y

01 0 2x y 0 3x%2 2xy 3y 0

2 3

2 2 3 x2y xy y

1 x y x xy y° x

3x2y

(3.178)

(3.179)
(3.180)

(3.181)

(3.182)

:l (3.183)
3

The respective values of (x, y) substituted from Eq. (3.18) for all nodes,

the matrix [A] is formed.
The strains {e} are computed as {e(x, y)}

e, M}=1-—57 ¢

| 0x3dy |

—Qa4q + 6a7x + 2agy + 6ai1xy)
= { —2Q2ag + 2a9x + 6ajgy + 6a1xy)
| 2(as + 2agx + 2agy + 3a11x? + 3a12y?)

=]000 O 0 -2 0 0 -=-2x -6y
|00 0 0 2 0 0 4 4y O

= [C){a}

The bending moments are written as:

02w 0%
M, —_-—(Dx *+D ‘”)

ax2 " Tly?
i, =022+ 0, 25)
My =2ny;;;3;
where
D=Dx=Dy=12(1Lt_3v5 ny:%(l—v)D

0 0 0 -2 0 0 6x -2y O 0 —6bxy

(3.184)

al

a2
(3.184a)

(3.185)

(3.186)

(3.187)
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The stresses {3(x, y)} are written as [D]{e(x, y)} and

{3(x, y)} = [DI[B1{3} (3.188)

where [B] = [C][A]"!
The stiffness matrix K is written as
b

a
K1= [ [ 1B (DNBIax (3.189)
00

and nodal forces are given as per Eq. (3.175)

b a
{F} = [//[B]T[D][B]dxdy}{ﬁ} (3.190)
00

Where a particular element is considered, the above matrices are given as
suffix ‘e’. Table 3.20 gives the stiffness matrix [K] for the plate flexure
element.

Typical mesh schemes for a flight or landing are given in Figures 3.46
and 3.47.

Table 3.20. Plate flexure: [K']¢ (Bangash 1989, 1993).

KT =

LI
LH
LIV

LV

A

LHI

LV
LVIII

[LI]=|:—B C }
-D E F

("= [

(V1= [
M/

G/
[LVII] — l:‘]/

[L%] = [

A
B
D

Gl
j/

Ml

G
J
-M

C
E F

H I
K L
N O

HI
K/
_N/
H

K
—-N

LVI
LX X
G H I
=7 x L
M N O
TP Q R
wvi=ls 17 ¢
X v Z
A
iw"M=| B ¢
| -D —-E F
-r P Q@ -R
Ll [LVHI]= S T S/
o’ -XY Z
I A
-L LXj=(-B ¢
o -E F

H=0=J Q=0=S H =0=1/J
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Figure 3.46. Typical mesh
schemes for a flight or
landing.

Figure 3.47. Typical
landing or flight mesh
scheme.

Table 3.20 (cont.).

A = 20a2 Dy, + 86 Dy,
B = 15abD,

C = 2062 Dy + 842 Dyy
a2
D = 30Dy + 156Dy + 6bDsy

b2
E =30—Dy + 15aD; + 6aDy,y
a

b2 b2
F = 6025 D, + 60— Dy +30D; + 84Dy,
a a

G = 10a*Dy — 2b* Dy,
a2
I = =30--Dy = 6bDsy

K = 106D, — 842Dy,

b2
L =15—D; —15aDy —~ 6aDyy
a

b2 a?
0= 30; - 60b—2Dy —30D1 — 84Dy,

P =10a’Dy — 86’ D,y

2
R= —15%Dy +15bD; + 6bDs,y

G' =5a’Dy + 262D,y

! az
M’ =15—Dy — 6bDxy

T = 106> Dy — 24> Dy
b2

Y = 30— Dy + 6aDx,
a

K’ =5b2D; + 222Dy,
b2

N’ =15—D; — 6aDyy
a

b2 a?
Z= 6Oa—2Dx + 3027—2— Dy, — 30Dy — 84Dy

, b? a?
0' = ~30; Dy — 3075 Dy +30D; + 84Dy

a
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Figure 3.48.
Three-dimensional single
layer isoparametric element
for flight and landing.

3.7.3 Isoparametric finite element analysis

The basic global and local coordinates are related to each other (Fig. 3.49)

X =) Ni(&n,)Xi = Nixp + Noxa + - - = (N} (X}

i=1

Y = Ni(En, 0¥ = Niyi + Noyp + - = (N {¥,) (3.191)

i=1

Z= NG n0Zi = Nzt + Nazg + - = (N (Z,)

i=1

where i = 1 to n.

N; = (&,n, ) are the interpolation functions in the curvilinear co-
ordinates, §, m, ¢ are the global X, Y, Z coordinates of mode i. The
interpolation function N is also known as the shape function. The terms
Xn, Yy, and Z, represent the nodal coordinates and {N }T and is de-
pendent on (£, n,{). Reference is made for important aspects of the
mapping procedures. The most important aspect is to establish a one to
one relationship between the derived and the parent elements. The nec-
essary condition for a one to one relationship is the Jacobian determinant
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Global coordinates  Parent element — three dimension

E=+1

Figure 3.49. Line and solid
elements.

given in Eq. (3.192).

- 0X

3
90(X,Y,2Z) Y

W=S3eno ~| %

0Z

| ot

0X 09X 7
m g
Y oY
an 8t
YAREY/
an 8t

a) Line element b) Solid element (20 noded)

n=nc

=§c

rdl Y

}= constant

«

G

L

1

2

8 noded solid element
(with line isoparametric

derived element)

¢) Panel element

(3.192)

The interpolation functions (#;, v; and w; the nodal displacements) are

expressed as:
U, n,8) = Niug + Naup +
n
=D _NiE,n. 0w

i=1

V(E, M, 0 = Niv1 + Navp + -

=Y Ni(&, 1, )v;

i=1

W(E, M, 0) = Njwi 4+ Nawy + - + (V)T (wn)

=Y NiE n, Dw;

i=1

o (N ()

A (T ()

(3.193)
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When the shape functions are evaluated (Table 3.21) for a particular
solid, line and plate element, the global coordinates and displacements
at any point within the element are expressed in terms of the nodal
values.

Table 3.22 gives the material compliance matrices for concrete, steel
and timber. Table 3.23 gives details about loads and forces. The gener-
alised nodal force equation is given below:

(PY = / (BYT"[DI(B] dV | {ue} — / (B1”" [D){eo} AV

ol vl (3.194)
+ / (817" {00} 4V — / (N1 (p) dS — / INTT'(G) v
vol S vol

The terms given in Eq. (3.194) are defined in a matrix form.
The element stiffness matrix [K]¢ is then written as

+1+1+1
" 1
[K]¢ = /[B]T [DI[B]dV = / / / BT DBdetJdedndt  (3.195)
vol -1-1-1
Table 3.21. Solid isoparametric elements (Bangash 1989, 1993).
Eight-noded solid element 8
z s 14 "‘16
y
4
x
1 2
Node i Shape functions Derivatives
M0 o o, N
i(§,n, ¢ 3k an 3

§A-50-ma -1
FA+5HA-mA -7
FA+5HA+mA -
FA-A+m -1
FA-A=mU+Y)
1A+5A-mU+D)
FA+DA+m1+7)
A=A +mA+7)

o0 N2 N R W N e

-3 =-mA -9
H1-na-y
Fa+n -y

-3 +mA -9

-3 -mA+Y
Fa—-ma+y
FA+n+Y)

—31+m)A+7)

-3 -5)(1 -1y
-1 +8)(1 -1
1A+ -9
-1 -9
—31 =81+
—$1+80+9
A +5)A+7)
01—+

-3 =1 -¥§)
-1 +81-n)
—31+8A+n)
-3 -5)A+mn)
§d-5)1 -1
FA+EA—n)
§1+5)1+7)
-6+
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Table 3.21 (cont.).

Two, three and four-noded elements
The shape functions and derivatives for the isoparametric line elements are given below.
a) Two-noded line element

Shape functions Derivatives

z
Ny = 1(1 6) aN; 1
1=3 e T2 Y
1 aN, 1
Ny = =(1 —_— =
p) 2( +8) 3t 5 N
Global axes

b) Three-noded line element

Shape functions Derivatives

line elements

1 aN; 1
Ni=36-D8 ?{zs_i 2 Qc}—constant
5 INy
Npy=1-§ — =2 solid elements =£,
a5 = constant
v e M ] ¢=t
3—§(§+ )8 '5‘{—5+§
¢) Four-noded line element
Shape functions Derivatives =& = constant
VR PN AP AN 1 RS PP 6=t
1—5( —E)(E “2) & "3 §— 68 t3 line elements
4 1 8N
et Eefe)
. ) Ny 4 \ n=n }—constant——— solid elements
m=30-9)(er3) FE=3(1--r) »
1 2 1\ ANy 1 =L }_c‘ms )
Ny §(1+’§)<2§ —§> o §<4§+6’§ ——)
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Table 3.22. Material compliance matrices (Bangash 1989, 1993).

a) Concrete or composite material

[D] — Variable Young’s modulus and Poisson’s ratio

-

Dy =

Ds)

D3

D4 =0

Ds; =0
L. Dg1 =0

1—
_( v_23v32) E,

V21 + V23V
=(21 3 31)E1

v

_ (v31 +_v21v32) E,

v

_ (v13 +:;12v23) Es

(v12 + v12v32)
Dyp = TEz D3
(1 —vi3v31) (v23 + vi3v21)
Dy = ——5—~—E2 Dy = ~——""—"EF;
(v32 + vi2v31) (1 —vizv1)
D3y = TEz D33 = ———E3
Dy =0 Dy3 =0
Ds; =0 Ds3 =0
Dgy =0 Dg3 =0

Diy=0
Dy =0
D3y =0
Dy =0
Dss =0
Dgg =0

U =1-—v12v21 — V13V3] — V23V32 — VI2V23V31 — V21V(3V32

Ejvy = Eyvi2 Dss = Gy
Eyvyp = E3vys Deg = Gi3

Ejv;3 = Ejus;

Dy5=0
Dys =0
D3s =0
Dys =0
Dss =0
Dgs =0

Dig=0
Dy =0
D36 =0
Dgs =0
Dsg =0
Dgs =0 |

The values of G173, G23 and Gy3 are calculated in terms of modulus of elasticity and Poisson’s ratio as follows:

G = 1
G - 1
G = 1

Ey

E;

Ey

+
L2(1 + v12)

2(1 + v)

Ej5

E;

+
L 2Q1 + v23)

2(1 4+ v3p) |

E;

+
L2(1 + v31)

2(1 + v13)

b) For isotropic cases: £} = Ey = E3 = E

1 E n Eq
21 2(1+v12) Ey
7 2L
i E + v12 ]
1 Ey + E;
2] 201+ v3) Ep
2 P
B <E3 + b
1 Es " Es
2| 200 +v31) E3
2 —
L (El tua A

c) Steel or timber; vip = V3 =VUp3 =V = V3 =V =V
[D] - Constant Young’s modulus and Poisson’s ratio

[D]=

E

A+v)(1-2v)

1 —v v
v 1—-v
v v
0 0
0 0
0 0

v 0 0 0 7
v 0 0 0
1—v 102 0 0
0 2 0
0 1—-2v 0
1-2
0 0 v
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Table 3.23. Miscellaneous loads and force (Bangash 1989).

Gravitational forces (surface forces)
Equivalent nodal force in the line of gravity Z direction.

0 n n n O
{Ps}i = f[NT]i 0 +dVol=3 3 YN ki O ¢IJlijxWiW;Wx
v -pg i=1i=1i=l1 g J4
Body forces
Body force component per unit volume at (X, Y) point is:

A X fe

fy ={f}=wa2 Y s O;é/{N}T fy dvol

BE: 0 v Iz

In the case of isoparametric elements.
Concentrated loads
Concentrated loads away from the point.
{Poo} =NiE, . 5P, 51 =% mny=-n, t=+I

Distributed loads
aY odZ 0Z dY

P oh
_ T” TN 94 oA 94 94 _
{Ps} = /// N; Ipx, Py, p;] 3t am an 5 dgdn, forig= =1
-l-t-l 3X dY 8y 8xX

9§ an 9§ an
similarly for § = &1, n = £l1.
Thermal loads

{P)r = / BT Derdv =" [Blik[Der}\/lij.x Wi W; Wk

i=1 j=1k=1

n
{er}=[oarT,arT,arT 00 O]T, T= ZN,-T,-
i=1
Creep loads

(Ples = [ B Decdv = 3 3 Y (B clDeche e WeW, W ds cn

i=1 j=1k=1

Table 3.24. Stress and strain transformation matrices (Bangash 1989).

{T5'H{ T}
z 4

Global axis Local axis
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Table 3.24 (cont.).

Direction cosines of the two axes are given by:

Iy = cos(k, x),
I, = cos(n, x),
I3 = cos(g, x),

my =cos(§, y), ni=cos,z)

my = cos(n, y), nz =cos(n,z)

m3 = cos(¢,y), n3=cos(,z)

The following relationships can be written for local and global strain and stress vectors:

{E;} = [Tel{ex},

and also

{02} = [Ts]){ox},

_ 112
i
i
201,
20515
L2013

(7/1=

- 2

ll
2
12
12
" = 3
[7,] I

Ihls

L3

{0} = [T17 (0}

2
my

m
m3
2mimy
2moms

2mims

2
mi

2
m3
2
m3
mimy
moms3

mims3

niny  himy +lamy ming +many Ling + Lny
nony  loms +1lsmy mony+msny  lna+ l3ng
niny limsz+l3my miny +m3ny Iiny + e

{ex) = [To17 {€},)

n% Iimy mini lin ]
n% Ihymy many Ihny
n% I3m3 mans Iany

2niny Iimy +lymy miny +mony ling + bhny
2non3  lyms + lamy  mans +many  lns +l3ngp

2niny Iimy +myls miny +many  liny +nyls

n% 2l my 2mny 2l1n
n% 2lhmy 2mqny 2lany
n% 2l3ms 2man3 2l3n3

The nodal force due to body force:

+1+1+1

{Pb}e=/ [N]T”{G}dV:—fffNT”Gdetszdndc (3.196)
vol

-1-1-1

The nodal force due to surface force:
(P} = _/[N]T”{p}ds (3.197)
S

The nodal force due to initial stress:
+1 4141

{Pog}e:f [B]T”{oo}dv:ff/BT”o—odetstdndc (3.198)
vol

-1-1-1



Finite element method 191

Figure 3.50. Mesh scheme
for an integrated staircase
using isoparametric
elements.

Figure 3.51.
Three-dimensional
isoparametric element
mesh scheme for a helical
staircase.

The nodal force due to initial strain:
[Py} = f (B17"[D1{eo} dV
vol

+1+4+1+1 (3.199)

— _/ffBT”DeodetJdgdnd;

—1-1-1
Equation (3.195) can be written as:

(F = (K1) + (Po} + (P + {Po}® + {Peg)® (3.200

Where shear and torsion are to be involved, Table 3.23 gives the stiffness
matrix [K] which is included in the overall stiffness matrix [K] of the
structure and in this case the stairs. During the finite element analysis,
sometimes it becomes necessary to transform stress and strain matrices
{Ty'} and {T,’}, respectively, from local axes to global axes or vice
versa. These are done with the help of Table 3.24. The finite element
mesh schemes are given in Figures 3.50 and 3.51.
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3.7.4 Concrete and steel failure criteria

Introduction

Several failure criteria for concrete (Bangash 1989) have been suggested.
The most suitable one for stairs is the Ottoson failure model for concrete.
Table 3.25 gives this failure model together with the computer listings.
The material model for concrete is also given in Table 3.25. For stairs
made in steel, von Mises criteria are adopted throughout in the finite
element analysis and a full description is given in Table 3.26.

Finite element substructuring

For multiple staircases with complicated features a substructure analysis
is adopted using a super element concept (which may be treated as a
reduced element from the collection of elements). Subscripts y and y'
represent the retained and removed degree of freedom of the equations;
partitioned into two groups, the following expression can be substituted
into the finite element analysis.

% bl 2]
= 3.201
[kyly ky1y1 Uyl Fyl ( )
Equation (3.201) when expanded assumes the following form:
{FY} = [kYY]{UY} + [kyyl]{Uyl} (3.202)
(F1} = [k1, J{UY} + [k,1, 1{U1} (3.203)

When a dynamic analysis is carried out, the subscript y (retained) rep-
resents the dynamic degrees of freedom.
When Eq. (3.202) is solved, the value of Uy1 is then written to:

(U} = [k 7 H{F ) = e ] Ty J{U) (3.204)
Substituting {Uyl} in Eq. (3.202)

[[kYY] - [kyly] [kyy1 ]—1 [kyly]] {UY}

=[5~ B0k ] 1A )] o
[K){U} = {F} (3.206)
where
[_K] = [kW] - [kyly][kyyl]_l[kyly] (3'207)
{-F} = {Fy} - [kyyl][kyyl]_l{Fyl} (3.208)
(U} = {vy} (3.209)

and [K] and {F} are generally known as the substructure stiffness matrix
and load vector, respectively.
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Table 3.25. Concrete failure model (Bangash 1989).
Ottoson failure model
Based on the chain rule of partial differentiation, the gradient 9f/9(0) is given by Bangash (1989)
_of afadh af a.Jp df dcos3b
=30 9l 90 34 30 | Boos3e go Al T @2t a @
Bf B ®)
a =
YTan TR
af 8 AR 3w A L0 WAL RV ALIEEEN Loz, 172009
a = — — = — — = —= —_—
2T 9n T 2 8n 2 fc’2 3 £ an f2 12 fioan
a2 1 .33 V3
mzﬁ[l(lcos[gcos KTF cos360 >0 (©)
where the following equations are adopted for surfaces:
1 1 _
- K sm(P)-\/(_) ( )fJ( ) 6/2
or
1 3/3 V3 1 3
= - in(P K — | +=
K| sin( )3J< 15 13/2) 1_t2<+2>
or
K, t 33 1
= —Kj sin(P) — = —— sin(P), t=Kyp—— 573
) 72
— t2 2J 2J 1 — t 2 ‘]2
oy 9 T 1 3V3 )
2 R _ g2V 93 <
% aJZ{chos|:3 3cos K> 2 13/2 cos6 <0
1 (=1 33 enl| -K . t
= K (—sin(P - Ky—=1J N L e — _—
1(— sin( ))|: 3\/1——_t2< 25— 2 57 (sin P) — Gy
from this equation:
A 1 1 343 1
a=——+—— X—Kls1n|:—cos (K2 )] ] cos36 >0
12 2121/2];'{ 3 2 pr)Ji-e
A 1 T 1 V33
=— - A—Kpsin| — — —cos™ ( Kg—r ) “ (e)
172 3
£ 2P I [3 3
-0 )\121/2 3620
= Hcos30 f! o838 =2
172
B0 1 K>
= 3K sm[ cos ™! (K4 cos 39)] f
fc 3 2 — ®
1K1K2]1/2 sin |:1 cos 1(K cos39)] 3620
2 cos 36 >
T
Kika)y” si [“ L sl (~k cos39)] 30<0 (©
= - —= -K> co0s 30 < g
N 3

where t = K cos 30,

1
B = [E(sf +S2+52) +13, + 1 + rgx]
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Table 3.25 (cont.).

the values of Cy, C; and C3 are defined as

2 ! 1
1 3 3 3 0
1 2 1
1 ~3 3 ~3 0
ol 1 _1 2 0
1= = ! =81 3 p+Sy I+ 3 42
o} |0 0 0 0 Txy
0 0 0 0 Tz
0 0 0 0 Tax
e, 0 _3h 3, 3h 23S, )08
27 Blo) ~ 85, a{o) a8y d{o} 35, d{o}
3 dtxy 3y 0Ty, By BTy
0Txy 0{o} 01y, {0} = Oty 2{0}
In a matrix form C5 is given as:
1S — Sy~ 8 5.
L@asy — 8. -8 Sy
1
Cy={3@S-S=spl_ | &
2Ty Txy
21y, 2ty
2Tox 2t
33 J3
c0830 = — x —/—
3/2
2 12
Ca — dcos30  dcos30 8J5 + 9cos306 8o
3T 7% T T8k o) | 8k o)
from Eq. (k)
3
dcos30 343 dcos30 3J§J 2\ __ %50
a3 7 o\ 2 CN\FE)T T
hence

3 - ——

33035 9 -3 ah 343[35 3530
_2,23/23{0} 4 125/2 8{0}_2123/2

- 3o} 27, 3o}
now
aJ3 2 dJ3 9 aJ3

2
35, =5yS; — Ty E = SxS7 — Tyz B_SZ—__SxSy—tzy

1
Sy = 3(20)( — 0y —07)

s, 1]-1 38y, 1] -1 as, 1
do} 3

®)

®

®

9]

M

(m)

()

(0

()]



Finite element method 195

Table 3.25 (cont.).

aJ3 daJ3 aJ3
=2 — 28,1y, @ — =2 — 28,1y, =2 —25
atxy TyzTzx zTxy 3Tyz TxyTzx x Tyz Fr TxyTyz yTxz (@
0Tyxy T Ty, T Tzx T
= [000100]", —== = [000010]" , —= = [000001
3lo) [ ] 3i0) [ ] 3t0] [ ] (r)
1 2 2
3[2(53,52 - tyz) - (SXSZ - T'zz) - (st)’ - Txy)]
1
3[ (558 = 2) + 288, = ) - (S8, - )]
aJ3 1
0T = §[—(sysZ =2 = 2(8:S; — ) +2(5:5, — )] )
2(TyzTzx — SzTxy)
2(TeyTzx — SxTyz)
2(Txy Ty, — SyTxz)
Equation (s) is further simplified as:
1
3285 = 5. = 5:8, - 22, + 1%, + 1]
1
3[25x5: = 8,5: = 5.5, — 2%+, + 1]
aJs 1 2 2 2
0] = 5[2sxsy — 85y — SxS; — 215, + 15, + T ] (sa)
2(TyzTzx — SzTxy)
2(TxyTex — SxTyz)
2(TxyTyz — SyTxz)

From the flow rule of the normality principle, the following relationship exists between the plastic strain increment and the
plastic stress increment:

o
dle) = g0 ®

This equation can be interpreted as requiring the normality of the plastic strain increment vector to yield the surface in the
hyper space of r stress dimensions. As before, d\ is proportionality constant.
For stress increments of infinitesimal size, the change of strain can be divided into elastic and plastic parts, thus (as

before):
d{e} = dfe}e + dfe}p (u)
The elastic increment of stress and strain is related to an isotropic material property matrix

(D] by d{e}.[D]I" {do} W)

de}e = (DI dio} + dx[%] W)

The function stresses, on differentiation, can be written as:

of af _[a”
df=5c—1d01+a—02d02+“' 0—{%} d{o} 0
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Table 3.25 (cont.).

Equation (x) together with Eq. (y) can be written in matrix form:

d{e} = [D];,) d{o} )
or
- af -
d0x
af
dex oy doy
dey i doy,
de, do; do;
dvay | _ (D]~ i dtxy @
dyyz 0Txy dty,
dyx . of dr;x
. ’ aTyz e
0 af da
0T x
of af af af af of 0
L 80, do, do; 0Txy 0Ty, 0Ty .
Inversion of the above matrix [D]~! will give stresses
d{o} = [D]ep dfe} (z1)
The explicit form of the elasto-plastic material matrix [D),, is given by
B ATLAY T (3]
1= 010 22} 0|2 10 4]

The value of df /30 has been evaluated above.

Ottoson Model
IMPLICIT REAL*8(A-H,0-2)
COMMON /MTMD3D/ DEP{6,6),STRESS(6),STRAIN(6),IPT,NEL
DIMENSION PAR({3,5),FS(6,6),FSTPOS(6,6),PROP(1),SIG(1),
Q@ DVIIDS(6),DVJI2DS(6) ,DVJI3DS(6) ,DVTHDS (6}
OPEN (UNIT=5,FILE='PARAMETERS’,STATUS='0OLD’)
READ (5, *,END=3700 ) ((PAR{IF,JF),JF=1,5),1IF=1,3)
3700 CLOSE (5)
PK=PROP{3) /PROP (4)

IP=0

Jp=0

IF (PK .LE. 0.08) IP=1
IF (PK .EQ. 0.10) IP=2
IF (PK .GE. 0.12) IP=3
IF (PK .LT. 0.10) JP=1
IF (PK .GT. 0.10) JP=2
IF (IP .EQ. 0) GOTO 3800
A=PAR(IP,2)

B=PAR(IP,3)

PK1=PAR(IP,4)
PK2=PAR(IP,5)
GOTO 3900
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Table 3.25 (cont.).

3800

3900

4000

4100

SUB1=PK-PAR(JP, 1)
SUB2=PAR (JP+1,1)-PAR(JP,1)

A=SUB1* (PAR(JP+1.2)-PAR(JP,2)) /SUB2+PAR(JP, 2)
B=SUBLl* (PAR{(JP+1.3)-PAR(JP, 3) ) /SUB2+PAR(JP, 3)
PK1=SUB1* (PAR(JP+1.4)-PAR(JP,4)) /SUB2+PAR(JP, 4)

PK2=SUB1* (PAR(JP+1.5)-PAR(JP,5) ) /SUB2+PAR(JP,5)
VARI1=SIG (1) +SIG(2)+SIG(3)
VARJ2=1.0/6.0* ((SIG(1)-SIG(2))**2+(SIG(2)-SIG(3))**2+

(SIG(3)-SIG(1)) **2+SIG(4)**2+SIG(5)**2+SIG(6) **2
VARI13=VARI1/3.0
VII31=SIG(1)-VARI13
VII32=SIG(2)-VARTI13
VII33=SIG(3)-VARI13
VARJ3=VII31*(VII32*VII33-SIG(5)**2)-SIG(4)*SIG(4)*VII33
-SIG(5) *SIG(5))+SIG(6)*(SIG(4)*SIG(5)~-SIG(6)*VII32)
VAR3TH=1.5*3.0**(0.5) *VARJ3/VARJ2**1.5
IF(VAR3TH .GE. 0.0) GOTO 4000
ALAM=22.0/21.0-1.0/3.0*ACOS (~-PK2*VAR3TH)
TOTLAM=PK1*COS (ALAM)
DFD3TH=PK1*PK2*VARJ2**0.5*SIN(ALAM) / (3.0*PROP(4) *
SIN(ACOS (-PK2*VAR3TH) ))

GOTO 4100
ALAM=1.0/(3.0*ACOS (PK2*VAR3TH)
TOTLAM=PK1*COS (ALAM)

DFD3TH=PK1*PK2*VARJ2**0.5*SIN(ALAM)/(3.0*PROP(4)*

SIN(ACOS (PK2*VAR3TH) ) )
DFDI1=B/PROP(4)
DFDJ2=A/PROP (4) **2+TOTLAM/ (PROP (4) *VARJ2**0.5)

DVI1DS(1)=1.0

DVI1DS(2)=1.0

DVI1IDS(3)=1.0

DVI1DS(4)=0.0

DVI1DS(5)=0.0

DVI1DS(6)=0.0
DVJ2DS(1)=1.0/3.0*(2.0*SIG(1)~-SIG(2)-SIG(3))
DVJ2DS(2)=1.0/3.0*(2.0*SIG(2)-SIG(1)-SIG(3))
DVJ2DS(3)=1.0/3.0*(2.0*SIG(3)-SIG(1)-SIG(2))
DVJ2DS(4)=2.0*SIG(4)

DVJI2DS(5)=2.0*SIG(5)

DVJI2DS(6)=2.0*SIG(6)
DVJI3DS(1)=1.0/3.0*(VII31*(-VII32-VII33))+2.0*VII32*VII31l-

2.0*SIG(5) **2+SIG(4) **2+3IG(6) **2
DVJ3DS(2)=1.0/3.0*(VII32*(-VII31-VII33))+2.0*VII31*VII33-

2.0*SIG(6) **2+SIG(4) **2+SIG(5) **2
DVJ3DS(3)=1.0/3.0*(VII33*(-VII31-VII32))+2.0*VII31*VII32-

2.0*SIG(4)**2+SIG(5) **2+SIG(6) **2

DVJ3DS(4)=-2.0*VII33*SIG(4)+2.0*SIG(5)*SIG(6)
DVJ3DS(5)=-2.0*VII31*SIG(5)+2.0*SIG(4) *SIG(6)
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Table 3.25 (cont.).

DVJ3DS(6)=-2.0*VII32*SIG(6)+2.0*SIG(4)*SIG(5)
CONVJ2=3.0*3.0**0.5/(2.0*VARJ2*1.2)
VJ3J2=VARJ3/VARJ2**0.5

DVTHDS (1) =CONVJ2* (-0.5*VJ3J2* (2.0*SIG(1)-SIG(2)-SIG(3))+

] DVJ3Ds (1))

DVTHDS (2) =CONVJ2* (-0.5*VJ3J2* (2.0*SIG(2) -SIG(1)-SIG(3))+
c DVJ3DS(2))

DVTHDS (3) =CONVJ2* (-0.5*VJ3J2* (2.0*SIG(3)-SIG(1)-SIG(2})+
c DVJI3DS(3}))

DVTHDS (4) =CONVJ2* (-3.0*VJ3J2*SIG(4)+DVJI3DS(4})

DVTHDS (5) =CONVJI2* (-3 .0*VJI3J2*SIG(5) +DVJI3DS(5))
DVTHDS (6) =CONVJ2* (-3.0*VJ3J2*SIG(6)+DVJI3DS(6))
DO 4200 Is=1,6
FS(IS,1)=DFDI1*DVI1DS(IS)+DFDJ2*DVJ2DS(IS)+

DFD3TH*DVTHDS (1IS)
4200 FSTPDS(1,IS)=FS(IS,1)
RETURN

END

Orthotropic Variable-Modulus Model for Concrete
IMPLICIT REAL*8(A-H,0-~2)
DIMENSION E(3),G(3,3),D{(6,6),PROP(1)
DO 222 II=1,6
DO 222 1J=1,6

222 D(II,JJ)=0.0

AA=(1.0=-PROP(5))/(1.0+PROP(5))*(1.0-2.0*PROP(5))
BB=PROP(5) /(1.0-PROP(5))

E(1)=PROP(12) *PROP (1) *PROP (6) +PROP {2) *PROP (9)
E(2)=PROP(12) *PROP (1) *PROP (7) +PROP (2) *PROP (10)
E(3)=PROP(12) *PROP (1) *PROP (8) +PROP (2) *PROP (11)
DO 7100 J=1,3
DO 7100 K=1,3.
7100 G(J,K)=0.25* (AA* (E(J)+E(K)))-2.0*AA*BB*DSQRT (E(J) *E(K) )
D(1,1)=AA*E(1)
D{1,2)=AA*BB*DSQRT(E(1) *E(2))
D(1,3)=AA*BB*DSQRT(E(1)*E(3))
D(2,1)=D(1,2)
D(2,2)=AR*E(2)
D(2,3)=BB*DSQRT(E(2) *E(3))
D(3,1)=D(1,3)
D(3,2)=D(2,3)
D(3,3)=AA*E(3)
D(4,4)=G(1,2)
D(5,5)=G(1,3)
D(6,6)=G(2,3)
RETURN
END
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Table 3.25 (cont.).

Material Matrix for Reinforcement
IMPLICIT REAL*8(A-H,0-2)
COMMON /MTMD3D/ D{(6,6),STRESS(6),STRAIN(6),IPT, NEL
DIMENSION PROP(1),DS(6,6),SIG(1),EPS(1),NCK(1),PS1(1),PS2(1),
1 PS3(1),DC1(1),DC2(1),DC3 (1)
DO 111 II=1,6
DO 111 JJ=1,6

111 DS(ITI,JJ)=0.0
DS(1,1)=PROP(9)/PROP(6) *PROP(2)
DS(2,2)=PROP(10) /PROP (7) *PROP (2)
DS(3,3)=PROP(11) /PROP(8) *PROP (2)
CALL TESTCK (PROP,SIG,EPS,NCK,PS1,PS2,PS3,DC1,DC2,DC3)
IF (NCK(l) .EQ. 1 .OR. NCK(2) .EQ. 1 .OR. NCK(3) .EQ. 1)

@ GOTO 220

CALL DMAT (PROP,NCK)

220 DO 222 III=1.6
DO 222 JJJ=1.6

222 D(III,JJJ)=D(III,JJJT)+DS(III,Jddd)
RETURN

END

Table 3.26. Failure criteria for steel.

Following the plasticity concept together with the normality principle and flow rule (Table 3.25 Equations (t) to (z3)),
the following steps are taken to evaluate fracture in steel components such as steel trays and steel stringers for a typical
flight of a staircase.

The material plastic compliance matrix is written as:

_ D.ba"D,
P~ [A+aT D.b] ®
and finally, the tager material matrix can written as:
Deba® Db
br == (b m) ®
Here the isotropic and kinematic hardening effects can be considered.
General steps of flow and fracture calculations
1. Apply a load increment, {A F,,} where n is the load increment.
2. Accumulate total load
{Fu} = {Fa1} + {AF), {R} ={AF,} (3.210)
where {R} is the residual load vector.
3. Solve
(AU} = k17 (R) (3.211)

where i is the iteration.
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4. Accumulate total displacements

{Ui} = {Ui-1} + {AU:} (3.212)
5. Calculate strain increments as,

{Ag;} = [B{AU}} (3.213)
and strains

{e:} = {ei-1} + {Ae} (3.214)

6. The stress increments are calculated using the current non-linear con-
stitutive matrices

{Aci} = {f(o)H{Ag} (3.215)
Accumulate stresses as:
{oi} = {oi-1} + {Aoci} (3.216)

ISP-stress point indictor

=0 elastic point

=1 plastic point

=2 unloaded from plastic state

= 0y uniaxial yield stress

6.1 Firstly, the stress increment is calculated using the elastic material

matrix as {Aoﬁ} = [D]{Ae} where [D]{ is the elastic material matrix
for any material in the staircase. First estimate of total stress:

{0} = {oi-1} — {Ac}} (3.217)
6.2 Calculate
@i} = {f©)},Gi-1} = {f(6i-1)} (von Mises) (3.218)

yield criterion or other yield criterion such as Ottoson etc.
6.3 If plastic point (i.e. ISP = 1), go to step 6.5.
6.4 5; > o, point (ISP = 1), transition from elastic to plastic, calculate

factor frg
Oy — 0j—1 )

JTR = <—————_ — ) (see Figures 3.52 and 3.53) (3.219)
Gi — 0i—-1

stress at yield surface

{0:}Y = (0i-1) + f1g{Ad}} (3.220)

calculate elasto-plastic stress increment

{Aci} = [DE, {0} (1 — fr){Ae) (3.221)

total stress

{oi} + {o:}Y + {A0y) (3.222)
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set ISP =1; go to 6.7
if 5; < oy elastic point, 0; = ¢ go to step 6.8.

6.5 Plastic point in the previous iteration, check for unloading i.e. 5; >
oy, see Figure 3.53 go to step 6.6.
Unloading at this point, set ISP = 2, total stress

{o:} = {oi—1} + {Aoi} and set {0y} = {G; -1} (3.323)
go to step 6.8.

Idealised curve

61 l_....__ql_%
_ ca,’!
e . |@Ei-oi-1) e
@5 izl _.\\' 3 From two similar triangles
g =177 407 by _ A'B'C' and A'b1cy
@ L (6,-6i-1) = _=
o y _(©,-G;_1)
BN RN )
1 1 1
&1 &
Strain (€)

a) Equivalent stress-strain curve for steel

Jrr — transitional factor from
elastic to plastic regime

From the figure
G;_1tfrrRAG'=0,
f ___ay_(_’i—l_ay_ai—l
®™"A5 &-0,_,

Yield surface

Figure 3.52. Yield criteria. D) Yield surface in the principal stress axes

Isotropic hardening  ©, =Yyield stress
de, deg E =initial yield moduls
E ~ |do Ideal plasticity E, = post yield modulus
g ot H=E, =0 H = strain hardening
Opf - == -t - -4
nloading/ !
elasticall)y‘ : g=do_E-Er
AW, : dos, E-Er
/
£ AE
I &1 | % |
Figure 3.53. Stress-strain 1. N .
curve for steel plate with (Plastic strain) (Ela§tlc
elastic unloading. strain)
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6.6 Loading at this point,

{Aoi} = [D];,{oi-1}{Ac} (3.224)
total stress
{oi})r = {oi-1} + {Ao;} (3.225)

6.7 Stresses calculated using the elasto-plastic material matrix do not
drift from the yield surface as shown in Figure 3.52. The following
correction is taken into consideration which is based on the equiva-
lent stress-strain curve. Correct stresses from the equivalent stress-strain
curve are:

Georr = 0;—1 + HAE, (3.226)

where A = equivalent plastic strain increment.

A = Agp %Aef} Asf, (3.227)
H is the strain hardening parameter, such that

Agp =\ (3.228)
Equivalent stress calculated from the current stress state:

6.8 {oi} = f{(oi)} (3.229)
factor = 6‘;’“ (3.230)

Therefore the correct stress state which is on the yield surface:
{0;} = factor{o;} (3.231)

6.9 The total stresses are converted into equivalent internal loads and
the residual load vector is calculated from

(R} = (Fy} — / (BT (6} dvol (3.232)

Check for convergence. Two types of convergence criteria are used. They
are the residuals and the displacement convergence.
The Euclidian norms are tested as:

Ui = (U112 + - + U1 (3.233)
1/2
IR = ([tR)T (R} (3.234)

where, ||R;|| is the Euclidian norm of the residuals.

“Fext” =y ngFext

is the Euclidian norm of the externally applied load.

IAUI AU U;
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is the Euclidian norm of the incremental displacements.

i =,/ulu;

is the Euclidian norm of the total displacements and the tolerance limit
for this is taken to 0.01. If convergence is not achieved, go to step 3
and repeat all the steps for the next iteration. If convergence is achieved,
then go to step 1 and repeat the process with the next load increment.
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CHAPTER 4

Staircases and their analyses:
A comparative study

4.1 INTRODUCTION

Various analyses mentioned in the text are examined in this chapter.
A total number of one hundred and fifty free-standing stairs and thir-
ty helical or horseshoe or a combination of these are examined. Two
types of finite element analysis are carried out. One particular analysis
is based on pure bending, shear and displacement using polynomials
of a specific order. Where torsion and axial effects are to be included,
isoparametric finite element analysis is adopted in which a provision is
made for solid elements representing concrete and steel major sections
and line elements representing reinforcement; either matched with the
nodes of solid element or placed in the body of the solid elements. For
steel stairs, the same finite element analysis is adopted except where
plates are used; a special plate element is given together with a dis-
placement polynomial in Appendix 1. For isoparametric finite element
analysis various shape functions are included in a specially developed
computer program, ISOPAR. The output gives stresses, strains, plastici-
ty index, cracks, failure modes, steel yielding and fracture under static,
dynamic and impact loads.

4.2 A COMPARATIVE STUDY OF RESULTS

4.2.1 Free-standing stairs

It is interesting to review the assumptions made in some of the analyses.
Liebenberg (1956, 1960, 1962) has introduced the concept of the space
interaction of plates in order to analyse free-standing staircases. This
means that the staircase can be treated as an indeterminate structure. No
torsional effects are included. Siev (1962, 1963) extended Liebenberg’s
method to include secondary stress resulting from the compatibility con-
ditions at the intersection between the landing and the flights. Torsional
moments and their stresses, being negligible, are taken as secondary
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stresses in order to evaluate primary stresses. Gould (1963) and Taleb
(1964) have produced simplified analyses by neglecting the bending
moments along the line of intersection of the landing and the flights.
Cusens and Kuang (1966) have assumed that the staircase behaviour
can be simulated by the skeletal rigid frame. Two halves of the staircase
are then taken as determinate structures and horizontal restraining forces
and moments are applied on each half. As a result bending and torsional
moments, axial and shearing forces are evaluated. This concept is well
recognised and is extremely valuable. As can be seen, the results are
obtained by the program ISOPAR. The number of solid elements and
line elements is 250 and 1200, respectively. Based on the model adopted
by Cusens and Kuang (1966) and as shown in Figure 4.1, finite element
analysis using the isoparametric elements representing concrete elements
and line elements in the body of these solid elements give a failure load
factor (excessive cracking, bursting of the reinforcement and the dislo-
cation of the landing from the flights) of 7.1 against the experimental
value of 6.48.

The same mesh, for economic reasons, is kept in the finite element
analysis when the results of others have been investigated. The load-
ings, dimensions and others including boundary conditions assumed by
the authors are included in the finite element analysis; except that the
torsional aspect is not ignored. Figure 4.2 shows the comparative study
of results of the finite element analysis with those used from the analysis
produced by various authors (Kersten and Kuhnert 1957, Atrops 1966,
Cusen and Kuang 1966, Leonhardt and Monnig 1973, 1975 and Bangash
1993).

A finite element analysis was carried out for slabless tread-riser stairs.
This time the analysis was based on the elasticity of the materials used
in such stairs. The far ends of such stairs are assumed to be fixed. No
failure analysis was carried out and the stairs were analysed within the
design limits. The analysis is in line with other research so that it can
be compared easily with the simplified analysis produced by Figure 4.3,
showing the comparison between the two analyses for stairs with differ-
ent number of steps for the ratio of width of tread/height of riser G/ H
ranging from 0.4 to 1.0.

A plate-bending finite element analysis was adopted for steps. Next
‘Scissors’ type staircases were analysed. Since isoparametric finite ele-
ment analyses are not involved directly in producing bending moments, it
was necessary initially to adopt the plate-bending finite element analysis.
Bending stresses and shear stresses were produced for various positions
of loadings. Using the same mesh size, a two dimensional isoparametric
finite element was carried out assuming the same boundary conditions.
Stresses and strain were produced. In most places they were almost the
same and the errors in them were within 5.5%. The isoparametric para-
metric finite element analysis was then extended to include torsional and
axial effects. Figures 4.4 and 4.5 give parameters for moments and ax-
ial forces for various widths of such stairs. The following gives further
explanations for their use. A typical example is given which is based
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A Siev’s method;
®  Gould and Taleb’s method;
B Cusens and Kuang’s method;

~— stress on top surface;

stress on bottom surface;

~ - ——=
X  tension;

—  compression;
oG stress;

w, ¢ uniform load;

Figure 4.2. Free-standing stairs — a comparative study of stresses.
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n — number of steps
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=
S
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n
———————— F. E. Plate bending (Bangash);

Liebenberg 1956, DIN 1055, Gould 1963, Sauter 1964, classical Cusen and
Kuang 1966, Rajagopalan 1973, Leonardt 1977

Figure 4.3. Plotted values of the variation of K with n for slabless stairs.
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Figure 4.4. The influence
‘coefficient parameter’.

1.2 14

1.6 1.8 2.0

width (m)

on Figure 4.4. It becomes necessary to give computational parameters:
a) Bending moment at the junction C and w load/unit length is at

CD.

Mc = ajws kNm
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Figure 4.5. Axial thrusts
versus width of stairs. (The
axial forces and horizontal
reactions are based on a
load of 3 kN/m?2. For other
loads, the results are pro
rata.)

120 £
F 4

® = 3kN/m? on the entire stair

100 1

80T

Axial thrust (kN)

60

40 |

20

20 ¢

n n i N

1.0 12 1.4 1.6 1.8 2.0
width (m)

b) Bending moment at supports A or B when wj lies on the plane
projection on the entire stair.
M4 or Mg = b (moment at the flight landing function)
+ due to self weight
=biMc +d1Mc

¢) Bending moment at the centre = same as (b) but c;M¢ + diMc.
d) Twisting moment (selfweight) flight centre M.



A comparative study of results 211

Different scales are given. These should be algebraically added to bend-
ing moments at appropriate levels: the value of M, (lateral moment)
due to self weight using a different scale can also be computed. In case
of live load, the ratio of such loads will apply to various M’s where
applicable.

These graphs are useful for preliminary assessment. A proper analysis
given in the text for each problem must be adhered to. The results are
in close agreement with those produced by Cusens and Kuang (1966).
The bending moments and axial effects are 5% optimistic when viewed
against the results produced by Taleb (1964).

4.2.2 Helical stairs

The analysis of such stairs involves torsional moments as well as bend-
ing moments and shears. Most of the curves of these staircases usually
appear circular in plan projection. Bergman (1956) considered this type
of staircases when reduced to its horizontal projection and when it re-
solved itself into that of a fixed ended curved beam loaded normal to its
plane of curvature. It is found that any cross-section of the slab, there
then exists a bending moment, torsional or twisting moment and a ver-
tical shear. Using the method of least work, Bergman treated the slab
as a fixed ended curved beam and the moment at mid span M¢ can be
written as:

Mc = wrl(U - 1) 4.1)

where

U [ 2(K + 1)sin® — 2K © cos © ]
(K+1)O®— (K —1)sin®cos®

K = EI /GJ the ratio of flexural stiffness to torsional stiffness; ® =

total central angle (Fig. 4.6); w = a uniform load on the entire stair

along the longitudinal centre line of the plan projection.
The moment at support

4.2)

M, = wr}(U cosa — 1) 4.3)

The torsional moment at mid span = 0. The torsional moment at support
= M;; = wriz(U sina — a*). Vertical shear V = wr; - a*, where o* is
in radians (1 rad = 57.3°).

The torsional shearing stresses are computed from the stress function
so that
320 9% —
ax2  3y? “44)
where ® = the angle of twist per unit length; G = shear modulus.

In Cartesian coordinates, the shearing stresses on the cross section in
the directions are respectively

¢

d
tz_x = % and txy = _'a_x (4.5)
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Figure 4.6. Helical stair of
Bergman.

Where torsional and direct shear are involved, the stresses are computed
as:

V  6M,
o= —+—
B~ B?
The straight member of a rectangular section: the maximum torsional
shearing stress on a rectangular wide cross section BDy is given by

Mt Df
= = — {3 4+8—2 4.7
Tmax = Tzx BD}?}( + B ) 4.7)

(4.6)

where B > Dy.

The maximum torsional stresses paralleling the shorter side is 0.751;x.
The variation or increase of torsional shearing stresses due to curvature
is given by

Mt D f
'tmax_\yBD} <3+1.8 B ) (4.8)
where W is the multiplication factor for stresses.

Figure 4.7 gives the value ¥ which defines the variation.

Bergman’s method (Bergman 1956) described above is an approxi-
mate method of reducing the helical staircase to that of a horizontal
row girder. The structure strength of the helicoidal effect is not consid-
ered. Morgan (1960), Holmes (1950) and Scordelis (1960) are based on
the longitudinal three-dimensional indetermediate structure of helicoidal
shape to the sixth degree. They take advantage of the symmetry and
a number of redundants are equal to zero. Holmes (1959) assumes the
centre of gravity of the load to act along the centre line of the basic
helix and displacements are evaluated using Catigliano’s theorem. This
differs from Morgan (1960) owing to his location of a centre line of
loads parallel, but not coincident with, the centre line of the staircase.
A more reasonable approach is that of Scordelis (1960) in which the
centre line of the stair is identical to the centre of the stair. Scordelis
(1960) also suggests that the eccentricity of the centre line of loads
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Table 4.1. Torsional shear stresses.
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Figure 4.7. Increase in
maximum torsional
shearing stress due to
curvature (with
compliments of

V.R. Bergman, ACSOCR
1976 and JACI 1956).
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must be considered when the width of stair divided by the radius of
the centre line is greater than 1/3. The analysis can then be similar to
that of Morgan. The torsional moment by Morgan’s method is consider-
ably higher compared with Holmes and Scordelis. Cusens and Trirojna
carried out tests on models of the prototype staircase of the Students
Union Building (Fig. 4.8) at Chulalogkorn University, Bangkok (Thai-
land). Two models were designed and tested. Very useful results were
obtained. This prototype staircase has been taken as an example for the
finite element analysis. The finite element data input can be gathered
from the following:

EXAMPLE 4.1

B

total steps

H;

landing thickness
flight thickness
w

Jeu

f ¥y f yt
E
Element Nos.

Finite element analysis data

= yield strength of steel 460 N/mm?;

2m

19;

3.3 m from the floor line;

0.35 m;

0.15 m;

2.25 kN/m? uniformly placed imposed load;

strength of concrete = 30 N/mm? strength
cylindrical = 0.78 fcy;

Young’s modulus for concrete 20 KN/mm?;

solid elements 4 nodded 830;

bar or line elements 2500 (800 body, the other 1700 surface type);
load increments 20.
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Figure 4.8. Students Union
Building, Chulalongkorn
University, Bangkok (with
compliments of Cusens and
Trirojna, ACI Jan. 1984)
(Cusens and Trirojna
1964).
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Figure 4.9 shows a comparative study of results for vertical, lateral and
torsional stresses. It is interesting to note that results obtained from the
membrane shell analysis of these stairs are in close agreement with
those of the finite element elastic analysis. The final load at failure is
reached after 19 increments of the load. The finite element analysis
predicts excessive cracking of concrete and bursting of reinforcement
bars. Cracks along three principal axes and in between in most cases
exceed 25 mm when the reinforcement yield or burst. The load factor
comes out to be 3.72 against the experimental value of 3.65 predicted
from the model by Cusens and Trirojna (Cusens and Trirojna 1964).



216  Staircases and their analyses: A comparative study

a)
12y = ; T Goben
: | I —s—— Bergman
5 | : ! l - - - - Holxgrrlgs '
o ; ] i j ——— Morgan
g 6% o - et ; " Seordelis—
E | i i ‘ —~—— Finite element (Bangash)
! . { i
S : | |
@ 0foo )
b=} L. oo omiies )
'—“4 =g { S
-2 r ;
§—6 LA S -
-12 — i . " .
—40 -30 =20 -10 0 10
Bottom
0 (degrees)
b)
L7 R Ty
NN ‘ : : : i— Morgan
— : . = - — Cohen
Na gt o = Scordelis
E : N .——-— Finite element (Bangash)
2 01- [
8
E
2 i "
r—“i _8 \\‘\\;:.\.
< \;z
164 30 20 -10 0 10 20 30 40
T
Bottom 6 (degrees) op
c)
2“" - T - i "r } I *;'
—~ | |
B ! !
] I !
5 o <
= ‘
g Bergman
§ -1} iz = ——Holmes
= — Morgan
i — - — Cohen °
. T e Scordeh‘s
— . . . ; -, Finite element (Bangash)
—40 -30 —20 -10 0 10 20 30 40
Bottom 0 (degrees) Top

Figure 4.9. Computed stresses in the prototype staircase: a) vertical stress; b) lateral stress; ¢) torsional stress.
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CHAPTER 5

Design analysis and structural detailing

5.1 INTRODUCTION

This chapter deals with the design of staircases and other structural
components associated with them. A number of stairs have been designed
based on the information provided in earlier chapters.

5.2 EVALUATION OF VARIOUS PARAMETERS AND LOADS

5.2.1 Relation between loads, moments, shears and axial thrusts
of inclined and plane projection surfaces

If the two ends are simply supported (Fig. 5.1)
q'(L')? _q cos? a(L3/ cosa)

M= 51
2 2 (5.1
where ¢ and ¢’ are uniform loads on plane projection and on slope,
respectively.
The shear force
'L L
V.—_q——zqcosza- 2 (5.2)
2 2cosa
gLycosa —
— = Vcosa (5.2a)
The axial thrusts N is given by Eq. (5.3)
Ljsi —
N = % = Vsina (5.3)
where
— L
V = shear = -2
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fH TN

q
B

Figure 5.1. Loads on plane
and inclined surface. f |

Figure 5.2. Normal stairs.

5.2.2 Thickness and second moment of areas

Assuming Ly = 1 m and the width B = 1 m for the stair of Figure 5.2
for a normal stair

> Dy t(2t +3Dy)? i

L = — = = 5.4
*=361T T2 " 3%@tpy O G4
d?D?
0~ f . 43
L=—2 iy 5.5
Y= 6o+ Dypy 0 (5-5)

The following table is prepared for /Dy against values of i and i,
where t = hycosa and dp =t + Dy.

Table 5.1. /Dy versus values of i1 and is.

t/Dy 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

i 0.0278 0.0256 0.0237 0.022 0.0204 0.0190 00178 00167 0.0157 0.0147 0.0139
i 0.0428 0.0418 0.0409 0.0401 0.0394 0.0388 0.0382 0.0377 0.0373 00369 0.0365

5.2.3 Steps and reinforcement

There are several ways of arranging steps on the main flights of the
stairs. The most popular ones are:

a) precast steps in concrete on the staircase flight (Fig. 5.3);

b) steps cast in-situ with the stair case flight (Fig. 5.4);

c) slabless stair with steps doing a dual job (Fig. 5.5).
These figures show, respectively, the reinforcement layouts.

The steps shown in Figure 5.6 are a typical helical stairs. The steps
are balanced on a flight. They are doweled into the main flight. The
geometry and the analysis are fully dealt with in the text.
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Figure 5.3. Precast concrete
stairs. Note: D/f =Dy +
depth of embedment.

Figure 5.4. Cast in-situ
stairs.

Figure 5.5. Slabless stairs.

Figure 5.6. Reinforcement
details for the steps of a
typical helical stairs.

5.3 DESIGN EXAMPLES

Based on the analysis given in the text, a few design examples are given
to demonstrate their capabilities. Some numerical examples are already
given in Chapters 2 and 3. The same design principles are adopted for
them in order to obtain final design drawings.

EXAMPLE 5.1

A typical example is considered for the design of a single flight stair with three different
boundary or load conditions. Using the following values and parameters, design this
staircase by assuming E[ constant as:

Data

Design based on the Limit State Concept

Stair waist = 175 mm, thick = Dy
Solid finish to treads, risers and the landing = 40 mm
Plaster to finish = 0.2 kN/m?
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Characteristic imposed load =4 kN/m?
Concrete fo, = 35 N/mm?
Steel fy = 460 N/mm?
Cover to main reinforcement = 20 mm
Stair width =135m

Intensity of concrete unit weight = 24 kN/m?
The ends at A and C are simply supported. The width of the landing by construction
is 1.74 m.

SOLUTION
A free-standing single flight stair bottom floor and top full landing
Loading to flight:

Step section = 0.28 x 1/2(0.15) = 0.021 m?
Waist = 0.32 x 0.175 = 0.056 m?
Finish = 0.43 x 0.04 = 0.017 m?
Load/Step =0.09 x 24 =2.16 kN

Equivalent dead load per m? in plan to which can be added weight of plaster and the
imposed load.

q = load/m? on plan = 2.16 x 1000/280 = 8.1 kN/m?
Plaster = 0.2 kN/m?
gk = 8.3 kKN/m? characteristic dead load
w = design load = 1.4gx + 1.6gy = 1.4 x 8.3+ 1.6 x4.0=18.0 KN/m?
The load per metre run of the flight when the width is 1.35 m = 18.0 x 1.35 =
24.3 kN/m.
Loading to landing:
Slab thickness =175 mm
Weight = 0.175 x 244.2 kKN/m?
Finish =0.04 x 24 = 1.0 kN/m?
8k = 5.4 kN/m?
Plaster = 0.2 kN/m?
Design load = 1.4(5.4) + 1.6(4.0) = 14 kKN/m?

Per width of 1.74 m landing = 14 x 1.74 = 24.3 kN/m

The value for w = 24.3 kN/m chosen as a uniform value for the design analysis.
Case 1. Moments, shears and axial thrusts

M.=-40x2430=-97.2kNm

Rp =0.5x2430=12.15kN, Rs =4.5x24.30=109.35 kN

M (span AC) at 1.5 m from A = 24.3 x 0.625 = 15.188 kN m

M (span BC) at 0.9 m from A = 24.30 x (0.650 = 15.80 kN m

Shear V:

at A=09x24.3=21.87 kN

at C =—1.4 x243:left Vcq = ~34.02 kN
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at C = 1.5 x 24.3 : right Vcp = 36.45 kN

at B=—-05x243=-12.15kN

Axial thrust N:

at A =0.594 x 24.3 = 144.342 kN (comp)

at C, Ncag = —4.02 x 24.3 = —97.686 kN (comp) left
at C, Ncp = —4 x 24.3 = —97.2 kN (comp) right
Case 2. Moment

Mc =-0.17x 243 =—-4.131 kNm

Mxz (when X =1 m) =0.41 x 24.3 =9.963 kNm

Case 3. The ends are fixed and the landing is loaded with 1 kN/m. Since the dimensions
were different, a re-analysis is carried out below for the height (2.5 m) and a plane
projection of the flight (3 m) and the landing (2 m) giving a total horizontal distance
of 5 m. The following is the summary of various coefficients, loads, moments etc.
Sfuu=13, fn=208 f13=067, fi3=/31=0

Sia = fa = 0.65

310 =0, 30 =4/3, ¥9=4/3

the matrix [ f]3x3 is solved for X1, X, and X3

X1 =0.1914, X2 =-0.383 and X3=-1.69
M=mog+m X +myXs+m3X3

My =0.1914 x 243 =4.64 kNm

Mc = —0.383 x 243 =-9.31 kNm

Mp = —-1.69 x 24.3 = —41.07 kNm

The maximum positive moment in span CB = —0.45 x 24.3

= 10.94 kN m.
Stair design based on the British and European Codes. There are three possible cas-
es mentioned which have to be examined. The staircase has to be checked against
them. Under Case 1, the maximum moment at C = —97.2 kNm; V¢ = 36.45 kN;
N = 97.686 kN, the maximum moment at A and B = 0; V4 = 21.87 kN; N4 =
—144.342 kN. These values are chosen for the design of this staircase.

Main flight slab:

M 97.2 x 108

K = =
bd2fn 1350 x 1492 x 35

~ 0.0927 < 0.156 = K’

1
d = Dy(cover + 5bar) =175-20—6 = 149 mm

no compression steel is required and the slab thickness is adequate

z= d|:0.5 +,/0.25 - 0K—9:| = 0.88 > 0.95d OK.

M 97.2 x 10°

As = 0.87f,z  0.87 x 460 x 0.88 x 149

= 1852 mm?/1.35 m width

or Ag (required) = 1372 mm?/m width
as provided Aj (provided) T16 bars at 125 mm centres [T16-125],

[As (provided) = 1608 mmz].
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The minimum reinforcement for high tensile distribution bars to be provided should be
0.13% of the gross cross-sectional area of the slab.

Ay min = 0.13/100 x (1000 x 175) = 227.5 mm2/m run

Provide 10 mm high tensile bars (HT) at 300 mm centres (4; = 262 mm?/m run).
First check the bar spacing to satisfy cracking condition (Dy = 175 > 200 mm); the
clear distance should not exceed the lesser of 3d or 750 mm. The value of 3d — 447 is
the maximum clear distance. Both main and distribution steel spacings are within the
established limit.

Shear force V:

The ultimate design shear force at C, V¢ = 36.45 kN > V4 or Vp. This value of
shear is considered and the reinforcement designed and checked for 36.45 kN should
be maintained throughout.

_ V. 3645x10°
" byd T 1350 x 149
1004; 100 x 1608 400 400

- = 1.08 R
bod 1000 x 149 >3% and —m =15 >

Note: V was computed on the basis of 1350 m width.
The design concrete shear stress v, is computed from the following equation:

v = 0.18 N/mm?

v — allowable shear stress = 0.79[1004,/b,d]1'/3 (400/d)"/* f,,

grade 25 concrete

For grade 35 concrete: foy = 35 N/mm?
ve = 0.86208( feu/25)"/3 = 0.965 N/mm? > 0.18

No shear reinforcement is necessary.

If the far ends are fixed having the same dimensions and this time the landing
is loaded, the moment will be different. Here at the fixed end at B, the top part of
the landing slab should be reinforced additionally for a moment of that magnitude. A
similar calculation should be carried out for the evaluation of reinforcement.

Figure 5.7 shows that for any or all of the conditions, the staircase design is adequate.

Check for deflection

Span/Depth = 5.0/0.175 = 28.57 > 26

M 97.2x10°
bd2 ~ 1350 x 1492

Modification factor for the tension reinforcement

=3.2431

5 1372
i ==x4 —— =245.3 N/mm?
since f 3 x 460 x 1603 5.3 N/mm
M.F =055+ —1 =243 016 <20

120(0.9 + 3.2431)

Allowable span to effective depth for tension reinforcement = 26 x 1.016 = 26.4 <
28.57. At C a beam is placed in order to reduce the span to 3 m. Actual span/depth =
3000/149 = 20.13 < 26 the deflection requirement is adequate.

Finite element analysis

Four noded isoparametric elements = 150.

Two noded bar elements placed on and in the body

of the solid elements = 390.
Factor of safety =239
EuroCode 2

Based on details given in Appendix 1, the design given in this example is safe.
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Figure 5.7. Sectional
elevation — Reinforcement
details.
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EXAMPLE 5.2

A typical span and a step section of a two flight staircase is shown in Figure 5.8. The
flight represents cranked slabs with step sections added over the distance of travel. The
data given in Example 5.1 with exceptions are still applicable. Only half of the landing
exists at the top. The floor size added at the bottom should be equal to the half landing.
Design reinforcement for this staircase using grade 30 concrete. The effective height
H =15m

SOLUTION
Staircases with R. C. wall and beam on sides without spine beams (Limit State Concept)

Load for one step as before = 0.094 x 24 = 2.16 kN

The design load = 1.8 kN/m?

The width of the flight =135m

The load/metre run =18 x 1.35 =243 kN/m
Design load for landing =14 x 1.35 =189 kN/m

The half width of the support will be taken into account when considering the main
landing span over the shorter distance at right angle. The spread of load to a landing
= 2 m. The dimension to the centre of the assumed strip is 850 mm. This is within the
limit.
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a) Plan

3 beam

S

b) Step section elevation c) Case type
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Figure 5.8. Staircases
without spine beams.

Total load =93.3 kN, R4 =41.1 kN and Rg =52.2 kN

Similar work based on the flexibility method has been carried out. The maximum
bending moment M = 69.8 kNm at 2.52 m from B.

Note: for a span of 1.7 m the load applied = 18.9 kN.
For span of 2.52 m the load applied = 24.3 kN m leaving 850 mm for the end A

M 69.8x10°
T bd?2f, 1350 x 1492 x 30

z= d[O.S +4/0.25 — ()K_9:| = 0.904d < 0.95d4

a__M
' T 087fz2

K =0.078 < K’ = 0.156

= 1295 mm?/2350 mm width

or = 960 mm?/m width

Adopt 13T12 bottom equally spaced in 1350 mm width of the stair and 1T10 per step
distribution reinforcement. The minimum steel as before T10 at 300 centres (A; =
262 mm?). The reinforcement is adequate against cracking.

Perimeter of steel required as U Bar made of mild steel from the R. C. wall is
160 mm,

52.2 x 108
-13(—)—;—-1—2@— = 2.2 N/mm? as a value for bending stress is OK.
Hence 7R10 — U Bars from R. C. wall Ag (provided) = 553 mm?

Landing load = 14 x 3.15 x 1.7 =75 kN
Two flight =2 x41.1 =822kN=157.2KkN
Maximum main landing slab moment (span 2850 + 300 = 3150 mm)
width = 1700 mm
M = 62 kN m from the flexibility method

area of steel as per width 1700 mm = 1270 mm? [11T12 equally spaced in 1700 mm
width].

The new reinforcement layout is shown in Figure 5.9.
Finite element analysis

Four nodded isoparametric elements = 150.
Bar elements = 430.

Factor of safety against design = 2.51.
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anti-cracks T10-300 TR10
bars: nominal

1T10/step 13T12
13T12

Figure 5.9. Reinforcement
details.

Figure 5.10. Free-standing i Ly [
stairs. ! I

EXAMPLE 5.3
A free-standing stair shown in Figure 5.10 is spacing longitudinally and is set into
pockets in the two supporting beams which can also be cast monolithically with stairs
at the top and bottom of the actual stairs. Using the following data, design the reinforced
concrete stairs:

Span L, =4m

G = treads = 12 of 300 mm

hy = riser = 160 mm

Width of the landing beam = 400 mm

Imposed load = 5 kN/m (public building)

Concrete grade 30 (BS8110); (M15IS 456)

Steel fy = 250 N/mm? (mild steel); Fe250 grade 1
(S 456)

Dy = waist slab thickness = 200 mm

Finishes = 0.6 kN/m

SOLUTION

A free-standing stair pocket with dowels to main landing beams. Monolithic to beams.

In many instances, the stairs can be precast or constructed after the main structure;
pockets are then left in the supporting beams and the stair is doweled to them. In this
case no appreciable restraints at the ends exist. The other condition is that the stair is
monolithic to beams, in which case the span moment is reduced when compared to the
previous case.

A comparative study is carried out between the design based on BS8110 and the
Indian code IS 456-1978. Using the flexibility method of analysis both cases of restraints
(the dowel and the monolithic) have been examined. In terms of the total w = Yg8k +
yrqL. The general terms are:

Case 1. Stairs pocketed to beams
M= fle%
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Case 2. Monolithic stair/beams

M = frwL?
f1=0.125
f> = 0.08-0.10

(A) IS 456 Indian Code (Elastic Analysis)

Effective span = nG = 12 x 300 + b (width of the beam = 400 mm)
4000 mm = 4 m checked

Waist thickness = 50 mm per metre of span = 50 x 4 = 200 mm
q’ = dead load on slope = 0.2 x 24 = 4.8 kN/m

2, =2
pia s B V"EIJ’G _ 542

1 —
gk on step = EhlG x 24 = 0.576

q =8k =

1 idth
Load on steps/m run = g on steps X m—gl_ =192 kN/m

Finishes = 0.6 kN/m

Total dead load = 7.944 kN/m

Imposed load = 5.0 kN/m

w = 12.944 kN/m

Case 1.

M =0.125 x 12.944 x 4% = 25.89 kNm
V =1/2x12.944 x 4 = 25.89 kN

M 25.89 x 106
effective dep b 0.874 x 1000 e
1

Dyr =172 4 20 (cover) + 3 bar = 200 mm

M 25.89 x 10°

- = 1243 mm?
osjd 140 x 0.865 x 172 mm

Agt =

R16-160 {A,; = 1257 mm?}
Note: o5 (Fe250 Grade- steel) = 140 N/mm?.

Distribution steel = 0.15% of cross section
0.15

= To0 ¥ 200 x 1000 = 300 mm?® {R8-160}

check for shear stresses

vV 25.89 x 10°

bd ~ 1000 x 172

100A,; 100 x 1257
bd 1000 x 172 ~ 0.731

IS 456 (2978) clause 47.2.1 Table 1.3b

Ty =

= 0.15 N/mm?

1. (allowable shear stress) = 0.34 N/mm? > 0.15 N/mm? shear stresses are within
permissible limits.
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Case 2. Monolithic with beams
M =0.1wL, =20.71 kN/m
Vinax = 24.1 kN

The reinforcement designed for Case 1 and thickness are sufficient. In Case 2 a rebar
arrangement would be necessary to bring about the monolithic state between the flight
and the supporting beams.
(B) BS8110 British Code

Design load = 1.4gx + 1.6gx = 1.4 x 7.944 + 1.6 x 5.0 =19.12 kN/m?
Case 1.
M =0.125 x 19.12 x 4> = 38.24 kNm

M 3824 x10°
~ bd2f, 1000 x 1722 x 30

No compression steel is needed and the slab thickness is adequate

z=10.949644d > 0.95d OK.

M 38.24 x 105
T 0.87fyz ~ 0.87 x 250 x 0.9496 x 172

R16-150  Aj (providedy = 1340 mm?/m

K =0.0431 < K’ =0.156

As = 1077 mm2/ m (A (required))

for comparison R16-160  Ag (providedy = 1263 mm?/m
Vo 1x19.12x 103 x 4

byd 2 x 1000 x 172

v, = allowable shear stress (25 grade concrete)

1004, 73 /400\'/*

check for shear v = =0.22

Grade 30 concrete v, = 0.70 x (-2——5-) =0.784 > 0.22

No shear reinforcement is required.

Case 2. Monolithic beams

The design of the Case 1 is not affected.

EuroCode 2

Based on details given in Appendix 1, the design given in this example is safe. The
codes show practically no difference in the final result.

EXAMPLE 5.4

The general arrangement plan of a free-standing staircase of a multi-storey building is
shown in Figure 5.11. Using both the Indian Code IS 456, ACI and BS8110, design
this staircase which is built around the stairwells as shown in the figure. The following
data are adopted.

hy = riser height = 150 mm

G = going = 250 mm
The stair slab embedded in the wall = 200 mm

H = effective height =3 m
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Figure 5.11. Staircase plan.

200
1000
well
1250
up 1000
200
1000 1000 1000 I
200 200
Between floors
Imposed load = 3 kN/m?
Finishes = 0.6 kN/m?
IS Code ACI Code
. Ocp = 5 N/mm? f& = 3000 psi concrete
o5t = 230 N/mm? fy =40 ksi steel

V > 1.71 kips/ft

¢ = strength reduction
factor = 0.85

SOLUTION

Staircase around stairwells

(A) IS 456 Code
Permissible stresses

ocp = concrete bending stress = 4 N/ mm?

o5 = bending stress in tension, steel bars = 230 N/ mm?

Parameters Q = 0.659, j =0.90

Effective span with 200 mm bearing on the wall = L; = 3.45 m
The ratio of the landing slab is spanning both ways, the effective
span/depth = 25
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9.98 kKN/m
3.75 kKN/m 3.75 kKN/m
1100 I 1250 [ 1100
| [
Figure 5.12. Load 3450
distribution.

Ly/d =25, d =138 mm
Dy = overall depth = d + 18 mm (cover) + 4 mm (1/2 steel bar dia.) = 160 mm.

Loads
. L 2502
waist slab on plan projection = 0.16 x 24,/ 1502 + 550
= 4.48 kN/m?
Flight:

1
step selfweight = 5(0.15 x 1 x 24) = 1.8 kN/m?
total dead weight = 6.88 kN/m?

imposed load = 3.00 kN/m?

total load = 9.88 kKN/m?
Landing:

landing slab = 0.16 x 24 = 3.84 kN/m?
finishes = 0.60 kN/m?

imposed load = 3.00 kN/m?

total load = 7.44 kN/m?

The load acting on the flights is given in Figure 5.12.
From the flexibility analysis

Mmpax = 11 kN/m, Vpax = 103 kN

/11 x 106
= =X 1000 = 129
d 0659 100 mm

Dy = overall depth = 160 mm is adequate

Ag = —— = 413 mm?
o5t jd

T10-180 (Ay; = 436 mm?)
0.12 x 1000 x 160

distribution steel = 0 =192 mm?

A
10045 _ 03 < 39 OK.

v

distribution steel = 192 mm? {R-140} OK.

percentage of steel =

The longitudinal section based on IS 456 is shown with adequate reinforcement details
in Figure 5.13.

(B) ACI Code

Note: 1”7 = 25.4 mm; 1 kip = 4.448 kN; 1 ft = 0.3048 m; 1 Ibf/in? = 6.895 N/m?.
f{ = 3000 psi slab thickness is maintained the same

fy =40 ksi; 6.3 inches = 160 mm
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__|200] 1000

A

7

Z

| 1250 | 1000 | 200
|

oo

T10-180

T10-180 L
T10-180
160

r——g——w
el

Figure 5.13. Reinforcement
details.

% R8-i/10

L 345x12
Mupax = 11 KNm, Vi = 103 kN, — X

30 = 03048 x 30 o

4.5
The weight of the slab = 1 x 0.15 = 0.056 kips/ft?

Dead load = wp = 0.056 x 1.4 = 0.079 kips/ft2 of width
Imposed load = wy = 0.100 x 1.7 = 0.170 kips/ft? of width

0.3048
= 3.190 kips/ft width

M, = ultimate moment = (0.079 + 0.170)[ X 0

3.45 ]2 1

Reinforcement p,, equal to about 0.375p, or one half the maximum permitted by the
ACI Code. In order to have reasonable deflection control Table 5.4 of the code is

considered.
0.375pp = 0.5 x 0.0278 = 0.0139 = p
Sy 40,000

"= 0857 0.85 x 3000

1
Ry =opfy (1 - Ep”’) = 0.0139 x 40,000(1 — 0.5 x 0.0139 x 15.7)

= 495 psi

M, \? 3.19 x 12,000 \ /2
i d = =0 —— =28i
required <¢Rub> (0.9 x 459 x 12) n

assume #5 bars, Dfreq =2.82+0.314+0.75=394in <4.5in
providle d=45-031-0.75=3441in

345
wl 0249(0 3048)
shear requirement V, ymax = 1.157" = 1.15+
= 1.62 kips/ft of width
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The design shear strength ¢V, for a staircase slab without shear reinforcement

1
¢[2fc'bd] = 0.85 x 24/3000 x 12 x 3.44 x 000 — 3.84 kips/ft

> 1.7 kips/ft

The stair slab with reinforcement is adequate.
(C) BS8110

Characteristic design load = 1.4 x 9.88 = 14.23 kN/m?
Characteristic design imposed load = 1.6 x 3 = 4.8 kN/m?

= 19.03 kN/m?
Characteristic design dead load = 1.4 x 7.44 = 10.416 kN/m?
Characteristic design imposed load = 4.8 kN/m?
Total load = 15.216 kN/m?

From flexibility method of analysis

Mmax = 40.76 kN m, Vpax (stair) = 11.9 kN + 8.368 kN = 20.269 kN

d =129 mm
K = ——— =40.76 x 10°{1000 x 129° x 30} = 0.0186
bdzfcu X { X X }
< K’ =0.156

K . .

z= d|:0.5 +,/0.25— ﬁ] = 0.9d no compression steel required
M 40.76 x 10°

As = 877 mm?/m (As (required))

T 087f,z  0.87 x 460 x 0.9 x 129
A (provided) = [T12-125] {As = 905 mmZ/m}

000 2
100 x 160 = 280 mm*~/m

As (provided) = [T10-300] {As (provided) = 262 mm?/ m}
shear = 2.269 kN
v =2.269 x 10° x 1000 x 129 = 0.157 N/mm?

minimum reinforcement are = 0.13 x

1004, _ 100x262 _ o 0.70] 1004 173 £ 400\ 1/
= = U. Ve = U, -
bd 1000 x 129 e b,d d
= 0.5 N/mm?
b, = 1000, d =129, As =905 mm?
f 1/3
for 30 grade concrete v, = 0.5(%) no shear reinforcement required.
=0.56
Check deflection:
5 A i
fo =2 fy ieaied _ 578 24 N/mm?
377 Ay (provided)
M 40.76 x 105
=T 244
bd?2 ~ 1000 x 1292 2449
477 — 228.24
modification factor = 0.55 + —ZZ——~—8—— ~ 1.269 £ 2.0

120(0.9 + 2.449)
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allowable span/depth = 26 x 1.269 x 1.15 = 37.94
actual span/depth = 3450/129 = 26.75 < 37.94

The slab is adequate for deflection.
Comparative study

The slab thickness comes out the same between IS and Bs Codes. The reinforcement
varies a little. Based on the ACI Code the slab thickness is less and the reinforcement
and concrete strength is slightly less.
EuroCode 2

Based on details in Appendix 1, the design given in this example is safe.
Finite element analysis

Four noded isoparametric elements = 190.

Two noded bar elements = 350.
Factor of safety = 3.15.
EXAMPLE 5.5

Using the load factor method, design a reinforced concrete stair keyed or doweled to the
floors and the landing supported by a column as shown in Figure 5.14(a). The flight slab
is then treated as simply supported. The stairs consist of spine beams supporting treads.
Using the following data, calculate the required reinforcement using the flexibility
method.

a)

| 3100 b

b 3500 ,

| t TN\
—— — 4._| l a g
_____ r_._f - —
Figure 5.14. Sectional
— up

elevation and plan.
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Concrete:

Density D, =y, = 2400 kg/ m?

Pcb =7 N/mm?2
Pcc =53 N/mm2
Shear v = 0.7 N/mm?

Avg. bond stress = 0.83 N/ mm?

Local bond stress = 1.25 N/mm?

Mild steel:

pst = 140 N/mm?

Psc = 125 N/mm?

Spine beam:

300 mm x 200 mm deep x 3.1 span lower flight
3.5 m span upper flight

Treads:

0.84 x0.076 m x 1.15 m

Imposed load = 510 kg/m?
Landing slab =1 m x0.75 m x 0.2 m

SOLUTION

Stairs on spine beams using elastic method

Loading:

Treads 1.15 x 0.84 m x 0.076 m x 2400 kg/m> = 176 kg/m

Spine beam 1.25 x 0.2 x 0.3 x 2400 kg/m> = 180 kg/m

Live load 0.84 m x 510 kg/m2 =428 kg/m
= 784 kg/m

In SI units 748 x 9.81/1000 = 7.69 kN/m

Stairs:
d =200 —40 - 22-5- =147.5 mm

- pepbd? T x 300 x 147.52 x 10°
Mg = resisting moment = =

4 4
7.69 x 3.12
Mapplied = —““‘—')8( =9.25 kN/m
M .25 x 108
=081, A, OB XN ss3 pm?

bdZ poy ~ 140 x 147.5 x 0.81
V =17.69 x %:11.9kN

o 11.9x103
V= 300 x 147.5 x 0.81

a nominal steel is required

= 0.333 N/mm? < 0.7 mm

3
local bond stress = — 2 _ 0 66 N/mm?

300 x 147.5(?“)
< 0.83 satisfactory
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steel bars in beams: together with stirrups

2R12 {A; = 226 mm?}

3R16 {A; = 603 mm?} = 829 mm?  R8-125 centres

Landing:

Cantilever beam in depth of slab 300 mm wide x 200 mm deep

Ry = reaction from the upper flight = 1/2 x 7.69 x 3.5 = 13.5 kN
R = reaction from cantilever slab = 1 x 0.75(0.2) x 2400 kg/ m?

=360 kg
. 383 kg
slab 1 m x 0.75 m x 0.2 m + imposed 1 x 0.75 x 510 = 743 ke (total 7.28 kN)
7.28 x 9.81
total R = ———— =7.28 kN
0 1000
Mupax =7.28 x 0.5+ 13.5 x 0.58 = 11.47 kNm
Mmax - MR = 0.06 kNm
0.06 x 10° )
s = 1351475 — 525 — o> mam
6 6
A, 11.41 x 10 0.06 x 10 7415 mm?

~ 140 x 1475 x 0.75 + 140(147.5 — 52.5)

Cantilever slab

Mmax = 7.28 x ? =2.73 kN m}

Total Ay = 905 mm? {4R16 (top) = A; = 804 mmz}
{2R8 (bottom) = Ay = 101 mm?}

M : 6
__ 273x10 — 0,98
bd2pe, ~ 1000 x 147.52 x 7
2.73 x 108
As X =135 mm2 R8-200 (A, =251}

~ 140 x 147.5 x 0.98

check critical shear for landing column diameter 300 mm
shear force = reaction from upper flight + reaction from lower flight + due to cantilever
slab

=135 kN + 7.693%1 +7.28 x 2 =13.5+ 11.9 + 14.56 = 39.69 kN
39.69 x 1000
= sh = = 0.127 N/mm?
v = shear sless = 7300 + 200) x 200 mm

< 0.7 N/mm? OK.

2

column area = n% =70.7 x 10°

Loading:
upper and lower flights + slab = 39.69 kN

2.5 m x 70.7(10)3 9.81

i —— =417 kN
own weight 1000 < 1000 x 2400 x 1000

Total = 44.13 kN

4T16 bars = 804 mm?
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main bars: 4T16 satisfactory, OK.
Stirrups: R8-200 centres
EuroCode 2

P = pecAc + pscAse = 5.3(70,700 — 804) + 125 x 804 = 47.5 kN

Based on details given in Appendix 1, the design given in this example is safe.

> 44.13 kN

EXAMPLE 5.6

Steps 4-6” (1.37 m) wide
Rise = 6.5 inches (165 mm)
Slab thickness = 6”

fe (concrete) = 750 psi (5.171 MN/m?)

Imposed load = 100 1b/ft? (4.788 kN/m?)
Plan projection of the stairs.

fi (reinf) = 18,000 psi (124 kN/m?)
j=0.872

SOLUTION
Staircase in concrete for a bungalow using

Figure 5.15. R. C.
bungalow staircase.

a) Plan
1 ]
! flight2 up ——I
- =
landing rr .
4 flight 1 LA

| 1

¢) Tread and landings dimensions

landing 2

landing 1

10-10"

In a newly-built bungalow, a RCC free-standing staircase Figure 5.15 is to be designed
and constructed in a space specially reserved for it. The internal dimensions of the
room are 10 ft x 18 ft (3.048 m x 5.49 m). The height from the first to the second
floor is 13 ft (3.96 m). As shown, the staircase should preferably be in two flights. The
landing beams are to be constructed and on them the slab rests. Use IS 456 (Indian
Standard Institute) and the following data for the design of the staircase:

External walls of the room 13.5 inches (343 mm)

Landing beam (9”) wide and slab 4’ span and 4” thick

Note: 17 = 25.4 mm; 1 kip = 4.44 kN; 1 ft = 0.3048 m; 1 Ibf/in? = 6.895 N/m?.

elastic analysis

b) Sectional elevation
—_—

landing
flight J-—-———-—-—'%

landing
beam

tread —
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No. of flight =2

Height available per flight = 13/2 =26 ft 6 in

Number of riser per flight = 78"/6.5" =12

Number of treads per flight =12 — 1 =11

Space available per treads = 18’ —4' —4' =10’ =120" ~ 3.074 m
Hence each tread = 121/11 = 11” wide (280 mm)

(A) Stair slab

beam width given = 9" (229 mm)
effective span of the slab = 121 + 9 = 130" (3.302 m)
Loads:

distance AB = /(112 + 6.52) = 12.79” (325 mm)

12
load/ft run = 6 x 12.79 x T 83 1bf/ft (1.211 kN/m)

11x65 12

load due to triangular portion = X ﬁ-”»39 Ibf/ft (0.57 kN/m)

dead load = 83 + 39 = 122 Ibf/ft? (5.84 kN/m?)

total load = w = 122 4 100 = 222 1bf/ft? (10.63 kN/m?)
M (using flexibility method) = 39,500 in 1bf (4.463 kN m)
when a 12" width of the R. C. slab is taken

M =126d? = 39500 .. d =5" (127 mm)

1
Dy = total depth of slab = 5" +0.75 + 7 (halfdiameter bar)

= 6" (152 mm)

39,500
As = f steel = 2 = 0.5 in®/ft width
s = area of steel 18,000 x 0.875 x 5 5in wi

1 1\?
Ed) bars with pitch 12% (5) /0.5 = 4.70” (114 mm) centres

[R12-100 bars A provided) = 377 mm?/m]

20
distribution steel 20% of the main steel = 0.5 x 100
=0.10 in? (0.645 cm?)
- _ b _ "
pitch = 12—4 16 %01 - 5.85" (147 mm)

use 0.25” ¢ bars at 5.5” centres [R8-150 Ay (provided) = 335 mm?/m]

(B) Landing slab
dead load for 4” thick slab = 48 Ibf/in?
imposed load = 4 x 100 = 400 1bf/ft width < 850 Ibf adopted

850
imposed load = —= =313 1bf/ft2 (15.0 kN/m?)
w = load on slab = 213 + 48 = 261 Ibf/ft>
M at the centre = 3 x 261 x 42 x 12 = 6160 in Ib (0.71 kN m)
M
d = effective depth = , [ ~—m—— = 2.05" (52 mm)

126 x 12
Dy = total depth = 2.05 + 0.75 4 0.125 = 2.93"” < 4"

adopt effective depth 4.0 — 0.75 — 0.125 = 3.13”
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6260

_ _ 12
= 803130872 213im

As

bq 1
25" itch = 12— x 0.252 x —— = 4.52"
0.25" ¢ bars pitch =1 1 x 0.25% x RE 5

adopt 0.25” ¢ bars at 4.5” centres [R8-100 Ag (providedy = 503 mm?/m]

2
distribution steel 0.13 x 20 _ 0.026 in?
100
127 x 0.252
0.026 x 4

Adopt 0.25” ¢ bars at 12” centres [R8-300 A; (provided) = 168 mm?/m]
(C) Landing beam (Fig. 5.15(c))
9” x 18" section

pitch = = 22.74" > 12" (305 mm)

reaction from stair loads = 222 x 1092

= 121 1bf (1.641 kNm)

Landing loads = one half of the load is borne by the landing beam
and the other half is taken by 13.5” (343 mm) wall.

= % x 261 x 4 = 522 Ibf (2.322 kN)

self weight 18" x 19”7 — 9" x 4" of the slab = 126 1bf/ft (1.84 kN)
total load on beam = 1210 + 522 + 126 = 1858 Ibf/ft

L, = effective span = 10 ft + 9 inches = 109" (3.28 m)

M = 0.125wL} = 321 x 10 in Ibf (36.273 kN m)

Since the moment is small, it can be designed as a rectangular beam. In general, for

large moments 7 and L beams should be considered.

/321 x 103
=, /= =16.82"
d 126 x 9 68

Dy = 16.82 + 1” cover + 0.5” for a bar = 18.32 > 18" assumed
9” x 9” section (229 mm x 483 mm)

increase in load = 9 1bf/ft (0.132 kN/m)

loading = 1858 + 9 = 1867 1bf/ft (27.3 kN/m)

1867
M = 321,000 x 725323,500 in Ibf (36.55 kN m)
M 4 2 " i/ 1
d =\ = 1690, Dy =1690"+1"+05" = 18.40 < 19" (483 mm)
X
323,500

d=19-1-05=175", A, = ’ =1.17 in? (113 mm?
S = 18,000 x 0.872 x 17.5 in” (113 mm”)
25 x 4

4—(5/8)" ¢ bars, A, = %—56—::— = 1.23 i/t
X

SI comparable 4R16 [Ajg (provided)y = 804 mm?/m]

Check for shear:

1
Vinax = 1867 x 70 = 9335 Ibf (41.52 kN)

= 462 kN/m?
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v, = allowable shear stress = 0.1f, = 0.1 x 750 =75 1bf/in?

> 67 Ibf/in? (462 kN/m?)
The steel is adequate for shear.
Check for bond stress:

1% 9335

= = = 78 1bf/in?
- 3
2 0jd 4 x 0872 x 17.50

Ub

= 573 kN/m?

Allowable: straightened bar = 0.1/, +25 = 100 Ibf/in?
> 78 Ibf/in? (573 kN/m?)
hooked ended bar = 0.2 f, + 50 = 200 Ibf/ in?
= 1379 kN/m?

the reinforcement is adequate.

EXAMPLE 5.7
The stringer beams of SCS type of 4 m span and spaced at 500 mm centres are used to
support a staircase. Using the following data, design the solid stringer beam in timber:

Dead load = 0.6 kN/m?

Imposed load = 5 kN/m? or 9 kN concentrated load

Bending parallel to the grain = 10 N/ mm?

Compression perpendicular to the grain = 2.8 N/mm? (without wane)
Shear parallel to the grain = 1.0 N/mm?

E (modulus of elasticity) = 7100 N/ mm? minimum
or = 10,700 N/mm? (E-mean)

SOLUTION
Timber stringer beam

dead load = 1.2 4+ 1.0 = 1.2 kN (udl)
imposed load = 5 x 4 x 0.5 = 9 kN concentrated or 10 kN (udl)
long term = 1.2+ 0 = 1.2 kN (udl)
medium term = 1.20 + 10 = 11.2 kN (udl)

or = 1.20 + 9 = 10.2 kN concentrated
greatest stress and deflection: coefficient K, = 1.0 long term

= 1.25 medium term

long term loading = 1.2 4+ 1.0 = 1.2 kN (udl)
medium loading = 11.2/1.25 = 8.96 kN (udl)

since the spacing < 610 mm, the load sharing modification factor

kg =1.1

max. allowable = 0.003 x 4000 = 12 mm; Eppean = 10,700 N/mm?
5.0 x 11,200 x (4000)°
T 384 x 10700 x 12

A size 75 x 245 mm would give a bending deflection as

=72.7 x 10° mm*
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Figure 5.16. Reinforcement
in stringer beam.

5 x 11,200(4000)3

= =949
384 x 10700 x 91.9 x 105 mm

3

3wlL

20Gbd
3 x 11,200 x 400

T 20 x 669 x 75 x 245

d, = additional deflection due to shear =

= 0.55 mm

3 = total deflection = 9.49 + 0.55 = 10.04 mm < 12 mm

00\ %11
The modification factor K7 = (%) = 1.0225

Bending parallel to the grain = 1.1Kg x 1.25K3 x 1.0225K7
= 14.01 N/mm?

Compression perpendicular to the grain = 2.8 x 1.1Kg x 1.25K3
= 3.85 N/mm?

shear parallel to the grain = 1.0 x 1.1Kg x 1.25K3 = 1.375 N/mm?

3_F 3 x5600

2bd ~ 2% 75 %245
< 1.375 N/mm? OK.

Bearing stress as the support:
The length bearing is 100 mm at the ends of each stringer.

5600
100 x 75 mm

shear at the support = = 0.457 N/mm?

The bearing stress = = 0.74 N/mm?

< 3.85 N/mm? OK.

EXAMPLE 5.8: Explain the space truss theory for concrete subjected to torsion

An unsymmetrical reinforced rectangular section of a stringer beam supporting a stair-
case is shown in Figure 5.16. From the analysis, the stringer beam is found to be
subjected to a torque of 70 kN m. Show that the stringer beam is safe and the rein-
forcement is adequate.

320 / Ry7
e a——— e

515
550
600

VAR i

At et r———

2
]

R20
R30
310
350
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Use the following data:

Syt = yield stresses
= for 10 mm ¢ bar 250 N/mm?
= for 20 mm ¢ bar 280 N/mm? [ R type
= for 30 mm ¢ bar 300 N/mm?

1
b = 5(320-}-310) =315 mm, 4 =515 mm

by = 350 mm, d; = 550 mm
ug =2(by +dy) = 1660 mm,  Ag = bid; = 162,225 mm?

s=75mm, fipy =300 N/mm?, fi, =250 N/mm?

A
Aslyy _ g6 N/mm?, f;y = 250 N/mm?
S

SOLUTION
Application of space truss theory to concrete under torsion
(A) Explanation .

Close spacing of longitudinal bars on all faces is considered to be superior in resisting
torsion. It is also helpful in controlling the width of the torsional cracks. Figure 17(a)
shows a rectangular cross-section with longitudinal bars distributed uniformly on all
faces. In the space truss theory it is assumed that the concrete core is not effective
and that the compression diagonals are due to the concrete shell. The solid rectangular
section, therefore, behave like a hollow section. The equivalent hollow section is shown
in Figure 17(b). The effective wall thickness of the equivalent hollow section is then
computed.

a) Section b) Equivalent hollow section

a
X L

~—

e e / Y
]

I > reinforcement

c) Truss theory
Fs Fy

Fy
F
MpT

F; F

o —_—

Figure 5.17. Explanatory
diagrams for space truss
theory.
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It is possible for the longitudinal steel to be placed unsymmetrically with reference
to the horizontal axis. When the torsion is accompanied by a bending moment, the
longitudinal steel near the tension face is greater than that near the compression face.
Hence in that case, two types of bars need to be considered as shown in the figure.

If the corner bar is assumed to be equally divided between the two adjacent faces,
the total area of the longitudinal steel in the top, bottom and vertical plane trusses
(Fig. 17(c) for space truss) is 314 mm?, 706.5 mm? and 510.25 mm?, respectively. The
corresponding field loads are 87.92 kN, 211.95 kN and 149.935 kN, respectively.

(B) Plane truss at top face

alt flty X as fsy

Tu =240 I xs
13

=87.7kNm

where T,y = the ultimate torque based on the torsional strength of the top.
If a, is the angle of the compression diagram.

ARy s 87,920

uo asfy 315 x 262

cot? oy = = 1.0653

a; =44.1°
Steel stresses due to torque of 70 kNm
(C) Distributed longitudinal bar

alyflvy (asfsy)

= 223.3 N/mm? OK.
Iy xs

Tuv - 2AO

four corner bars

ait firy + ap fiby » as fsy
24, s

(D) Plane truss at the bottom face

1/2
T, = 2A0[ ] = 199.4 N/mm? OK.

d 1/2
Tup = 2A0[M x w] —136.2kNm
Ip s
211,9507 1
2 ’ )
= —_— - 2
cot”ay [ 13 ]262 ora=23
7 5 x 1.602
fp = QX107 x 70655 = 154.1 N/mm? OK.
2 x 162,225 x ——
315
70 x 108

fs (bottom horizontal leg) =

780
2 x 162,225(F) x 1.6025

= 128.4 N/mm? OK.

(E) Plane truss at the vertical face

172
Tup = 2Ao[a——ltﬁty X —ansy] !
b s
Tub = Tut = Tu
149,935 1
2 2 o
t ={— — =43,
cot” o ( 515 )X262 or oy 5
70 x 108

fs (vertical leg) = = 195.3 N/mm? OK.

2 x 162,225 x % x 1.0541
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(F) Truss theory
If the same longitudinal reinforcement is distributed along the four faces, the ultimate
torque is given by the equation,

T, = [Zaltflty + ap fivy G fsy

Ug s

1/2
:| =99.8 kNm

Hence a reduction factor of 87.7/99.8 = 0.879 is introduced due to the asymmetry of
the longitudinal steel.
Corner bar: division between the longer and the shorter faces in the ratio d; /b,

Top Bottom Vertical

Area (mm?2/ mm) 0.4627 1.7025 1.2295
Yield load (N/mm) 129.6 510.75 361.3

The ultimate torque at the top (129.6 N/mm) as a lowest value, the value of T, =
76.4 kN and the reduction factor is 76.4/99.8 = 0.766.

The stringer can take the ultimate torque of 70 kN m on the basis of allowable stresses
and other parameters given in the data. Stresses from axial effects and pure bending
as described in previous problems should be algebraically added to these stresses from
torsional effects.

EXAMPLE 5.9

The steel stringer is laterally restrained at the ends and at points where the reactions
from the stair panels occur as shown in Figure 5.18. Using the following data, check
the stringer for bending, buckling, shear and deflection:

Data

Point loads: at B =3 kN
at C=2kN

Self weight = 1 kN/m
E; = 200 GN/m?
yr =16
yg =14

Figure 5.18. Stringer.

a) Staircase stringer b) B. M. diagram (shown resreve)
Py =122 Py=7.6 (kN) -

B c
Ry=169 (kN) L 1500 J, 1500 l 1500
| 4500

"LRD = 15.433 (kN)

¢) Shear force diagram
16.9
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Imposed load: at B =5 kN
at C =3 kN
Effective span = 4.5 m

For architectural reasons, the depth of the stringer should not be less than 203 mm.
The design should be based on BS5950 or equivalent.

SOLUTION
The design of a steel stringer for steel stairs using BS5950

PI=14x3416x5=122%kN
Pp=14x2+16x3=76kN
Reactions: taking moment at D

R4 =169 kN, Rp=15433kN

12.6 {1.5\?

My at B=16967x 15— —( —=) =223 kNm
45\ 2
12.6 /1.5\?

Mult at C =15433 x1.5— H(T) =20 kNm

The buckling moment check
Since the stringer is not fully restrained this check is needed. The critical unrestrained
length is BC

M=mMs < Mp = ppS
n =1.0; m is obtained in the following manner:

smaller end moment Mec 20
= = = — =0.896
larger moment Mep 223
Ref: BS5950 Table 18; m = 0.93
M - the moment (max) on length BC
=Ms=Mp=223kNm

M=mM4 =093 x22.3 =20.739 kNm

L = effective length = Length BC =15 m

Ref: BS5950 Table 5.9 (Steel Construction Institute)
203 x 203 x 60 kg/m UB

Plastic modulus Sy = 652 c¢m3

D=209.6mm, ¢t=93mm, T =142mm, d=160.9 mm
Since T = 14.2 mm < 16 mm, py =275 N/mm?

ultimate shear F, at B = 16.967 — 1.4 x 4.5 x % = 14.867 kN
M =223kNm

pv = shear capacity = 0.6pytD = 321.63 kN > 14.867 kN
0.6p, = 193 kN and 18.867 is less than 0.9p,

hence the shear load is low,

Mcx = moment capacity = py Sy = 179.3 kNm > 22.3 kNm
maximum shear and coexistent moment at A

F, =16967TkN, M =0

py = 321.63 kKN > 16.967 kN OK.
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Buckling resistance
Mp = buckling resistance moment = p, Sy
Ref: BS5950, Table 5.5 for p, = 275 N/mm?

ALT = nuvh = 23.47
u = buckling parameter = 0.846
x = torsional index = 14.10

n=1.0
py = 275 N/mm?
=289

1S
pp (Table 5.5) = 275 N/mm? v =096, = =2.05
X

Mp = 275 x 652 x 10° x 107 = 179.3 kN m > 20.739 kNm
M < M, the selection is adequate for the lateral torsional buckling

resistance.
Deflection
The imposed load is without safety factors
18 x 12.9
= :—5 =21.06 kN, Rj=43kN

. Rp =3.7kN
actual deflection 3,

21.06 x 10° x 45003

8 = =205
“ = 200 x 107 x 6090 x 107 o
. span 4500
f limit 3, = — = —— =12.
deflection limit 3, 360 360 12.5

d; < 3, the stringer is adequate for deflection.
Finite element analysis

Solid elements = 59.

Analysis steps = 15.

Factor of safety = 3.16.

EXAMPLE 5.10

Two stringers 17" x 14" support a 3 slab of the flight spanning 20 ft between the ground
floor and the first floor. The stringers are at 6 ft centre to centre. From the flexibility anal-
ysis (L1 = 20 ft), the maximum positive and the negative moments are 0.062wL% and
0.091wL%, respectively. Using the following data and the ACI 318.1M89/3.18RM-89
(Revised 1992) Code, design the reinforcement for the stair:

Imposed load = 3 kip/ft
Dead load =1 kip/ft
Partial } 3, =1.7
Safety factor } 8y = 1.4

f. = 4000 psi

fy = 60 Ksi

w = uniform load

The stringer is assumed to be cast in-situ with the 3” slab of the flight. Assume that
the torsional effects are included in given moments.




Design examples

245

SOLUTION

Stair design using the ACI Code 318-89 (Revised 1992) maximum depth of beam 20"
Note: 1in = 25.4 mm; 1 kip = 4.448 kN; 1 ft = 0.3048; 1 Ibf/in? = 6.895 N/m?.

Mpr =3 x 1.7(20)% x 12 x 0.0625 = 1530
Mpr = 1.0 x 1.4(20)% x 12 x 0.0625 = 420 positive moment
Total = 1950 in kip

M =3x 1.7(20)2 x 12 x 0.091 = 2225 negative moment
Mpr = 1.0 x 1.4(20)2 x 12 x 0.091 = —610
Total = —2835 in kip

1
Since it is cast in-situ, flange width = 7 X span= 60"

d = effective depth = 20 — 2.4 = 17.6”

M, 195x10°
T 9bd?2 T 0.90 x 60(17.6)2

k, = flexural strength coefficient

ky 117

Negative moment with stem width = 14” and d = 17.6"

d = effective depth = 20 — 2.4 = 17.6"
M, 283.5 x 10*

T obd? 09 x 14(17.6)2

Ref: ACI 318-89 (Revised 1992)

=727

ky

ky (positive) = 117

f. = 4000 psi
200

Pactual = 0.0028 < 0.0033
Ag = 0.0033 x 17.6 x 60 = 3.52 in?
As (providedy = 2#7  1.20 in?
2#10 2.54in>  Total A; provided) = 3.74 in?

Checked for shear and deflection. The stair has adequate provisions.

Finite element analysis

Solid elements =118.
Steps for the analysis = 15.
Factor of safety = 3.31.

EXAMPLE 5.11

Compute moment, torsion and shear for a helical staircase using the Bergman approxi-
mate method and also, using the following data, design the reinforcement for the stair.

r = inner radius of slab of the flight
B = width of slab of the flight = 5 ft
Dy = average normal thickness of slab of the flight = 8.5”
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26 = total angle subtended = 130°
r; = central radius = 7.5 ft
live load = 100 1b/ft? on horizontal projection

dead load including selfweight 175 1b/£t2 on horizontal projection stair height = 12 ft
k=0.65

SOLUTION
Helical staircase ~ Bergman’s method, ACI design method

Note: 1”7 = 25.4 mm; 1 kip = 4.448 kN; 1 ft = 0.3048; 1 Ibf/in? = 6.895 N/m?.

w = total load/ft = 5 x 275 = 1375 1bf/ft

B 5x12
= ratio of the flight width to thickness = Tx— = 7.06

f .5
K =065 0=065
© o 65 o
2(0.6 + 1) sin 65° — 2 x 0.65 x —— cos 65
U= o 57.3 =1.18
(0.65 + Dﬁ — (0.65 — 1) sin 65° cos 65°

Mc = 1375 x 7.5%(1.18 — 1) = 13,922 ft1bf

65
a at support = 6 = 65° = 573 " 1.1344 radians

sinf = 0.9063078,  cos § = 0.4226183
Mgypport = wr(U cosa — 1) = 1375 x 7.52(1.18 x 0.4226183 — 1)
= —38,773 ftlbf
T = My (suppory = wr2 (U sina — a) = 1375 x 7.52 x (1.18 x 0.9063078 — 1.1344)
= —5024 ftIbf
Viupport = wr = 1375 x 7.5 x 1.1344 = 11,698.5 Ibf

Design of the staircase

In order to distribute reinforcement correctly, similar values of M, M; and V can
be computed at Figure 5.19(a) for various values of a. Here the ACI Code of practice
(ACI 1994) is adopted. Figure 5.19(b) shows various diagrams which take into account
bending, torsion and shear. Design calculations are similar to the ones given in earlier
problems. The final reinforcement details are shown in Figure 5.19(c).

EXAMPLE 5.12
A helical stair beam is subjected to pure torsion and has the cross sectional dimensions
shown in Figure 5.20. Check that the reinforcement given is adequate for the following
conditions:

a) torsional cracking resistance;

b) torsional stiffness prior to cracking;

¢) the factored torsional resistance of the section;

d) torsion stiffness after cracking.

Data
fe =30 MPa

N = torsional factor = 1.0

¢, = torsional resisting factor = 0.6
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a) b)

- -

M, =+13922/t1b !
]

Uniform load /tDK '
©=13751bf/f} 2 ]

o

5 b.Mai
G x . WL diagram
b Plan ) ~ i |
»  projection ' !
o0 ]
8 2 i o 1 1900 4110 2951 :
- c 4 & | /\
E l\l —1169851pf S+ i

0 il

l/ L3 L/8) L8]
Torsional moment diagram

Shear dl;N

¢) Reinforcement details

Figure 5.19. A helical

staircase using Bergman’s \,\ 56’5° — -
method.

M,

m

1 1
— — AN
G=3E = (5000/77) :
Es =200 GPa
Sy = 460 MPa
§ = stirrup spacing = 150 mm

SOLUTION
Torsional resistance and cracking using Canadian Standard CSA-M84 and BS8110

Torsional cracking resistance T,

A, = area = 300 x 500 = 150 x 10° mm?
P, = perimeter = 2(300 + 500) = 1600 mm

A2 150 x 10%)?
Tor = 25 (0400 7) = (150 x 10°%)°
c

e X 04X 1.0 0.6/30 x 107°
=18.5kNm

Pre-cracking stiffness GCgross

Elastic theory is applied to the gross concrete section

3
C= (1 ——0.63—Z>b3h =2.80 x 10° mm*

+25024ft1b  +25024ftlb
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300
180
R10-150
500/ 380 | R10
| T16 at
Figure 5.20. A helical stair corner
beam. X

1 1
G= EEC = 5000430 x 5= 13.70 x 10°> MPa
GCyross = 38.3 x 10'2 N/mm?

Factored torsional resistance 7,

_ 240Aid, fy
5

T; =29.28 kN'm

A, = shear flow path

Py, = perimeter of Agp

A; = A; = area of tranverse reinforcement

Check

a) longitudinal area of transverse reinforcement
AgP, 79 x 1224

A = = ~ 645 mm?
s 150

area provided = 4 x 201 4+ 2 x 79 = 962 mm?

b) minimum area of transverse reinforcement (BS8110)

_ 024 ¢ i
=00 of gross section

= 0.24(M) = 360 mm? < 962 mm?

bp = width between stirrups or links centre line

=180+ 10+ 16 = 206 mm

hp = depth between stirrups or link centre line

=380+ 10+ 16 = 406 mm

area (Agp) enclosed by stirrup centre line
= 206 x 406 = 83 x 10° mm?

p = perimeter of Ayp
= 2(206 + 406) = 1224 mm
Ag = shear flow path = 0.85A,5 = 71.09 x 10° mm?

A; or A; = area of transverse reinforcement = 79 mm?




Design examples 249

Based on CSA Code
0.35 x 300 x 150
T
Ayprov = 2 x 79 = 158 mm?

= 34.24 mm?

¢) adequacy of section dimensions

0.250¢. f, = 0.25 x 1 x 0.6 x 30 =4.5 N/mm?

T,P, 29.28 x 10% x 1224
AL X ;‘2 =52 N/mm? > 4.5 N/mm? not OK.
A2, (83 x 103)

The nominal shear stress is excessive. Hence the nominal shear stress caused by the
diagonal compression failure in the concrete controls the design

/Agb —6
T < 0.25)\¢0ch x 107° £ 25.33 kNm
b

T, = 25.33 kN m is the factored torsional resistance

Finite element analysis

20 noded solid elements =20.
4 noded bar elements in the body of the solid elements = 10.
Factor of safety =2.59.

EXAMPLE 5.13
An architect drawing shows the basic layout of the helical staircase as shown in Fig-
ure 5.21. The staircase has to be designed in reinforced concrete. Using the following
additional data, calculate various moments and shears in the staircase and design the
reinforcement at various levels.
o = ¢ = slope made by the tangent to helix centre line with respect to the horizontal
plane = 25°
ri, R; = the radius to the inside of the stair = 0.9144 m
B = total arc subtended by helix = 240°
B = width of stair =122 m
r = Ry = radius to the external side of the stair = 2.134 m
D¢ = h = minimum thickness of flight = 150 mm or 100 mm
qL = wr, = superimposed load = 2.873 kN/m?
Dy, y = density of concrete = 23.4 kN/m3
feu = concrete cube strength = 30 N/ mm?;
Sy = yield strength of bars = 250 N/ mm? or 460 N/mm?

SOLUTION
Helical R. C. staircase — Morgan’s method

R = rp = radius to the centre line of load

2 R3-R3
=219 L]l _1603m
3| R2—R?

1
Ry = 5(2.134+ 0.9144) ~# 1.524 m

R| B 122
Mo10s, 2= 122
Ry D; ~ 0.100 m
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D
— e
200 wall -,
i |
| P
\ e
2
NG 1
Reinforcement layout
D - - —
[
o I
o
o~
= |
s
s
| p
-
-
-~
- o’ ”~
4900 I ¥
| 3
B - - -
X = Reinforcement layout
-
1700
| o 200
———— |
A p—a .
\ 7
N\ I |
S
~, Sectional elevation
A

Figure 5.21. A helical stair.
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T40 bars
T20-1500 length P
- Sy sl s—
RS 2| | ' 60
T Haneth 127N
L =length 1575 NG 5 H |.
i R8-200 \
E T20-1650 length bars E
200 1200 200
1600
Section on line D
R8-200
A
F /\—__
\ R10-150 .|8
v
R8bars] 2
L =length 1125
735 1375 225
4T40 Section on line B

T40 bars

= \\
- = e E
= _ I = =",

o Jet A e r,T:'p‘ s otk -.-'_;-!r Y R .
300 x 500 °© AT
L=1575
Section on line A
Section showing reinforcement details
Figure 5.22. Structural Design ultimate load = 1.4g; + 1.6 = 1.4 x 3.591 + 1.6 x 2.873
details of a helical stair.
= 9.624 kN/m

Morgan’s equations:
In tangential plane at mid span moment
= M, = My = —0.1 x 9.624 x 1.22(1.524)2

= —2.727kNm

Horizontal thrust A at mid span = 1.58 x 9.624 x 1.22 x 1.524
= 28.272 kN
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M,y = vertical moment about the horizontal axis

= Mpcos9 + HRy8tan $sind

- wR%(l —cos 6)
at 0 =0, ¢ =25, M;;=-2727kNm
at 0 =120°, ¢ =25°, M,r=2730kNm
M; = Ty = twisting moment
= (Mysin® — HR8cos0tand + wa sin® — wR{R20) cos ¢
+ HRysinOsind = 7.489 KN m

M, s = lateral moment

= Mpsinfsind — HRy8tanp cos8sind — H Ry sinBcos d

+ (wR¥sin® — wRy R26) sin ¢ = —37.683 kN m
Note: for M; (Tf) and M,y 6 =120°, ¢ =25°
Pny = thrust = —H sin6cos ¢ — wR0sind = —35.845 kN

6 =120°, ¢=25°

Vny = shear force across the waist of the stairs

= wR6cosd — HsinOsinp = 18.934 kN, 0 =120°, ¢ =25°

Vs = radial horizontal shearing force = H cos 6

at9 =90, Vir = H = 28.272 kN
at 6 =120°, Vpr =—14.136 kN

On the basis of these equations and the given parameters, graphs are drawn for various
values of M’s and V’s. They are given in Figures 5.23(a, b).
Typical design calculations

M = M, = My = moment in a tangential direction
=2.727 x 10° kNm
d=100-15-12=65m

M 2727 x10°
T bd?fe  1220(65)% x 30

No compression steel is required.

z= d[O.S +,/0.25 — %] =0.984 > 0.95d

adopt z = 0.95d ~ 0.97 mm

k =0.0176 < K’ = 0.516

2.727 x 10°
0.87fyz

As (provided) = [R12-300] [A; = 377 mm?/m] or [R10-300]
[As = 262 mm?/m]

As (required) = =129.26 mm?/1220 mm = 106 mm?/m

Minimum area D/s = 0.24% x gross sectional area of the flight

= 240 mm?/m

[R10-300] [A; (provided) = 262 mm?/m] OK.
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a) Variation of moments along stair

56 -\
S
y \
27 k
20 \\

Ve Mt

i N\

Value of bending & torsional moment (kN m)

~20 N, F.E.

-120 -90 —60 =30 0 30 60 90 120
b) Variation of shearing and thrust along stair
36

RN Az
r ﬂ)(\ - \\ Vi

T g KX ~ A
g AN ) N P
P, / NS

2 AN :

g 0 == -\\\

f" /‘// | /\

g -9 W \NJ" %
5 e ILE X \
: ¥ AN )
> 17

7 N

S
DN
\\

-120 -90 -60 -30 0 30 60 90 120

Figure 5.23. Morgan’s and finite element methods — A comparative study of shearing and thrust (x — Finite Element).
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Cracking due to bending:

In order to ensure that crack widths do not exceed the maximum acceptable limit of
0.3 mm

a) for grade 250 steel Dy or h > 250 OK.
100A; 100 x 262
bd 1000 x 65

a detailed cracking analysis is needed.
The clear distance between bars: the lesser of 3d = 195 or 750 mm spacing 150 mm
between bars is adopted.

=04>03

b)

Shear:
Ultimate shear = 18.934 x 10° N = V,¢

18.934 x 10°
v = the ultimate design shear stress = m = 0.2913 N/mm?
1004,
byd

The allowable design shear stress = V,
1004, ] 1/3 ( (400/d)\/4
b,d Yo
Ym = 1.25 for grade 25 concrete.

1/3
for grade 30 concrete V, = 0.433[%5] ~ 0.45 N/mm?

= 0.257

V, = 0.79[ ) = 0.433 N/mm?®

since, v = 0.2913 N/mm? < v, < 0.45 N/mm?
No shear reinforcement is needed at present under a pure bending condition.

M,y =27.30 x 10° Nmm, K =0.176 < 0.156

Increase Dy to 125 mm with d = 85 mm
K =0.1033 < 0.156 no compression steel is needed.
No significant change occurs in the calculations for shear or load on the flight

=dfos+ [(oas - 55) | <osora <o
z =74 mm
27.3 x 108

As (required) = m ~ 2274 mm?

1
As (required) = T55 X 2274 = 1864 mm?/m

T20-150 { Ay (required) = 2094 mm?/m]
M,s = 37.68 x 105 Nmm
d = 1220 — 63 = 1157 mm
_ 37.68 x 10°
©150(1157)230
7 =10.993d > 0.95d
Take z = 0.95d = 1099 mm

37.68 x 106
As (required) - m x

Adopt T20-150 as before

= 0.006255 < K’ = 0.156

1
135 = 70.22 mm?/m
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Figure 5.24. Torsional
reinforcement provisions.

(A) CSA Code
(i) T., = torsional cracking resistance (Fig. 5.24)

Al - (150 x 1220)°
EOAM’”‘/}: ~ 2(150 + 1220)

= 16.07 kNm > 7.489 kNm OK.

x 0.4 x 1 x 0.6+/30 x 1070

Additional pre-calculations
bp = 65+ 10+ 20 x 9 = 255 mm
hyp =65+104+20=95 mm

area A,p enclosed by stirrup link line centres = 255 x 95
= 24.225 x 10° mm?

perimeter Py, of Agp = 2(255 + 95) = 700 mm

(ii) T, = factored torsional resistance

_ 2A0At ¢cfy
s

Ag = shear flow path = 0.854,, = 20.59 x 10° mm?
distance between the centre line of bars:
d=125-20-20/2 =95 mm
A, = area of transverse reinforcement = 79 mm?2
vertical: 125 — 20 — 40 = 65 mm
horizontal: 1220 — 60 = 1160 mm

_ 2x20.59 x 10% x 79 x 0.85 x 250

T, = 5 x 1070 = 4.61 kNm

Torsional resistance:
Torsional resistance is now checked for the given reinforcement.

The links and longitudinal bars should fail together. This is achieved by making the
steel volume multiplied by the characteristic strength the same for each set of bars.
This gives

Asy(x) + y1)fyv = Assvfy
Asvfyv(xl + 1)
Svfy

The code also states that the spacing of the links should not exceed 200 mm. At present
the links are 150 mm so it meets the requirement.

or A; = = longitudinal reiforcement

(iii) torsion reinforcement

2 x 7.459 x 10%
o = X X =0.0181

(1220)2(150+ ?)

from BS8110: part 2, Table 2.3

1220
\d —o- v
125 65:[ ‘J
-& —& v
| / 1160 ,

T20-150
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Y min = 0.37 N/mm?

v+ v, = 0.2913 + 0.0181 = 0.3094 N/mm?
This is less than vy, = 4.38 N/mm? from Table 2.3. The value of v; is also less than

Vil 4.38 x 65
550 ~ 550

for 150 mm spacing (links) the area of links to resist torsional shear is

B 150(7.489 x 10%)
0.8 x 65 x 1160(0.87 x 250)

Total area of one leg of a link:

= 0.5176 N/mm?

= 85.6 mm?

ASU

No shear reinforcement due to bending. Total area of one leg of a link

§52'—6 = 42.8 mm?

Links 8 mm diameter with an area 50 mm? are required. Area given by CSA Code
shows that 10 mm links are needed.

No shear reinforcement due to bending. Total area of one leg of a link

85.6
- = 42.8 mm?

Links 8 mm diameter with an area 50 mm? are required. Area given by CSA Code
shows that 10 mm links are needed.

Adopt R10-150 links
The area of longitudinal reinforcement

_ 85.6 x 250(1160 + 65)
- 150 x 460

Note: (CSA Code gives 368.67 mm?)

As = 380 mm?

AP, 79 x700
s

Ay = longitudinal area of the reinforcement = = 150

= 368.67 mm?®
At (prov) = 9 x 314 = 2826 mm? OK.

minimum area of transverse reinforcement
_0.35 x 1220 x 150

—_ 2
750 = 256.2 mm

< 2826 mm? OK.

(iv) adequacy of the section

0.25\¢. f, = 4.5 N/mm?
T,P, _ 4.61 x 106 x 700

— = > = 5.5 N/mm? > 4.5 N/mm?
Ay (24225 x 10%)

not satisfactory.
The nominal shear stress is excessive. This stress which is caused by the diagonal
compression failure in the concrete does in fact dominate. Hence,

A? 4.5 2
ob 3 —6
< =—(24.225 x 10 107° =3.77kNm
Py 700( x ) x

The reinforcement shown is adequate.
(B) BS8110: calculations for torsion
(i) Basic equations and discussions

T, < 0.25M0,.f)
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Figure 5.25. Torsional
resistance.

Figure 5.26. Cracks with
diagonal tension.

torsional rigidity = GC
where G and C = torsional stiffness
values of shear stresses in design for torsion are given by

Ve min = 0.067f&/%  but vy min > 0.4 N/mm?
vru = 0.8 fA12 but vry > 5.0 N/mm?

A concrete staircase subjected to torsion generally fails as the result of diagonal tension
and cracks are formed in a spiral around the slab. The action on each face is similar
to the vertical shear in a beam. Reinforcement (of the torsional resistance of all links)
crossing the cracks is given by

0-87fyvAsv (xl)’l + y1x1>

2 Sy Sy

thus the torque is given by

T = 0.87 fyy Asy 2+
Sy

where, x1, y; are the dimensions of links
Agy — area of two legs of the link; fy, — characteristic strength given on the link.

The crack is assumed to be at 45° (Fig. 5.25)

The expression given in the BS8110: Part 2, clause 2.4.7 is
Asy T
—_ >

Sy 0.8x1y1 (087fyv)

A safety factor of 1/0.8 has been introduced.
Arrangement of reinforcement

Sy = link spacing

J

Diagonal cracks

Diagonal tension
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The clear distance between longitudinal bars required to resist torsion should not
exceed 300 mm. At present the spacing is 150 mm. Hence 9 bars with a theoretical
area of 380/90 = 42 mm? per bar are required. For bottom steel

As (required) = 2274 4+ 2(42) = 2358 mm?
Ay (provided) = T20 bars = 2826 mm?

for top steel 5T20 bars = 1570 mm? > 84 mm? as top bars in bending were not
required.

This arrangement meets the CSA code requirements as well. Figure 5.22 shows the
structural details of this type of staircase.
Finite element analysis
Isoparametric 4 Noded

No. solid elements = 2500.
No. bars matching solid elements (2 noded type) = 3000.
No. bars in the body of the element = 1500.
Load types

No. solution to failure =21.
Factor of safety =4.15.

EXAMPLE 5.14
A helical horseshoe type staircase is to be designed using the two codes BS8110 and
DIN 1045/DIN 1080.

SOLUTION
Design of the horseshoe type staircase
(i) Based on BS8110

The load factors y, = 1.4 and y; = 1.6 are taken into consideration in design of
such a staircase. The design calculations are identical to Example 5.13, the final design
drawing is shown in Figure 5.27.

(ii) Based on DIN 1045/DIN 1080

The design was carried out by H Vori Winter in Erlauterungen zu DIN 1080 Band:
Grundlagen VIII, 144 Seiten ISBN 3-433-00769-1
Published by W Ernst & Sohn 1977

The final design drawing is given in Appendix A2.1.15.

EXAMPLE 5.15
An ellipto-helical R. C. staircase is to be designed. Using the following data, analyze
the stair and prepare a useful drawing showing various reinforcement details:

H = staircase height = 2.66 mm
2 2

Ellipse in plan = ;‘—2 + ly’—z =1

n = riser = 190 mm deep 14NO.

G = 230 mm = steps width

Waist thickness = 150 = Dy

Width of the staircase = 0.86 m
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14T12-j-100 14T12-h-100

14T12-t-100
14T12-k-100
14T12-n-100
14T12-p-100
14T12-m-100

Figure 5.27. Reinforcement L = overall length = 4.18 m
details for a horseshoe type (3.60 m true length along the centreline) = L
staircase.

gk = 5 kN/m uniformly placed
gx =3 kN/m or 4.5 kN concentrated

Y. = 1.6
Y, =14
e = eccentricity = 500 mm for torsion

feu = 30 N/mm?
fy =460 N/mm?

SOLUTION
Ellipto-helical staircase based on BS8110 (designed by Hyder Group London)

The geometry is developed using the equation of an ellipse in plan and on a one per
unit height basis. The curvatures for a helix in vertical and horizontal direction are com-
puted thus matching with the corresponding points of the ellipse in plan. This was also
needed for the finite element analysis. A limit state design similar to that of Example
5.13 has been carried out, using the above data. The formal drawing showing various
reinforcement details prepared by the Hyder Group is shown in Appendix A2.1.8.
Finite element analysis

4 noded isoparametric elements = 1500.

2 noded bar element = 3500.

Loading uniform =1 type.
e = 500 mm.

Factor of safety = 3.15.

(excessive cracking of crushed concrete and bent bars).
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APPENDIX 1

Supporting analyses

Al.1 SHAPE FUNCTION FOR THE FINITE ELEMENT ANALY SIS

Al.1.1 Eight-noded membrane element (Bangash 1989)

Node i Shape functions Derivatives

Ni(&,m) 38_]\211 a—;v#
1 la-9d-m(-g-n-1 la-weg+mn) la-9@En+¥y
2 la-ghHa-n) ~£(1 - ) -5(1—£%)
3 la+ea-mE-n-1 la-weg-mn la+nen-9
4 fa-nHa+y fa-n?» -n(1+§)
5 1A+ +mE+n—1 la+wee+w 1A+ +¥
6 1A -HA +0?) —£(1+m) Ja-g%
7 la-va+m=t+n-1 la+mweg-n fa-v@n-¥%
8 30 -0 -¥) -1 -nd) —n(1 —§)

Al.1.2 Twelve noded membrane element (Bangash 1989)




Shape function for the finite element analysis

261

Node i Shape functions Derivatives
N aN; ON;
i) 3t W
1 51 =81 - +n> - P H1-mRE-382-n2+ 1 FU-9H2n-3n2-E2+ )
2 51 —5(1—HA-n) 51 -mEE2-25-1) —5(1—-51 -t
3 51 =m0 - E)(1+8) »(1—n)(1 -2 -3t —5(1-E5)(1 +¥)
4 A +5A—ME2+0% - P p(1-m2E+32+n2 -1 Ja+82n-3n7 -2 - ]
5 A +51 =01 —n) 51 =) -7 51 +E5EBn?-2m=1)
6 51+ 1)1 +1) 51 —-1H1 +n) 51 +8)(1—21=3n?)
7 HA+HA+mE+n2 - F] U+WE+382+n2— 21 FU+HRn+3n2+E2- )
8 51+ —§H(1+8) 25 (1+m)(1 — 2§ — 352) 51 —E)(1+8)
9 1+ —EH(1 —-¥§) w1 +n)EE2-38-1) 51 —EH1—§)
10 71 =51+ +n? = ] HA+02E =38 -0+ 9] HU-§2n+3n* - -]
11 5 (1—5)(1 =) +1) -5l +nd-n? H(1 -8 —2n-3n?)
12 5 (1 =51 —n?)(1—-n) -5 -0l -n? (1 -5 -2n-1)
A1.1.3 Shape function tetrahedral element (Bangash 1989)
Right tetrahedral element
4
Four-noded Nodal § m; ¢
Coordinates: No
3 , MEnD=A-t-n-0 ] 0 0 0
N3(§,m,8) = +n 3 01 0
. N4, 0) =48 4 0 1 1
Nodal § mn;
Ten-noded No
Coordinates:
NiGE D) =2(1—§—n—1)> ! 0 0 0
-(1-§-n-Y 2 1o o
NaG,m,®) = (25 — )& 3 0 1.0
N3, = (21— Dn 4 0 11
Na(g,m,9) = (2 — 1)% > : 00
Ns(,m,0) =451 —5 —1—10) 6 11 0
Ne (&, m,8) = 4En 7 0 3 0
1
N7(&,n,0) =dn(l —§—1—70) 8 0 0 3
Ng(E,n,0) =41 —E—n—-2) ’ 20 3
10 0o i )
No(§,n,5) = 4EL) 303

Nio(§,n,8) = 4ng
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—
st

10 12

a1 § -1
n

©,0

¢

A1.1.3(a) Shape functions prism element (Bangash 1989)

Fifteen nodes

Coordinates:

Mg 1,0 = ~5 0+ (1~ §)(VE2 ~1)

Mo 0 = 431+ VDA +D(1 8762 +ng~7)

Ns(&m,0 = +30+0(E + 1572+ VD)2 - 1)
y—

Nate 1,0 = +3 0+ D - n5™17%)

Ns(&m,0 = +3(+0(E ~ng~ )2+ V2) (2 - 1)
B

No(§, 1,0 = +3(1+ V21 + HEV - ms ™) (1 -5

Mg n, 0 = (1 -22)(1 —§'?)

Ns(&m,0 = +5(1 1) ("2 +ns™?)

NoG&, .0 = +5(1 = )52 = ng™7?)

Niot&, n,5) = 51 ~ 01~ §V2) (V22 +1)

N g = +%(1 +v2)A -0 (E +ng7 ) (1-£172)

Nia, .0 = 430 =02 + 05~ )[2+ VD - 1)
—E-1+70)]

Nis(E,m,0) =+ ~D(E ~ 2 ~72)

Niat,m,0 = +70 ~ D — g™ 22+ V32 - 1)
- E+n+9)]

MistE, .0 = +3(1+vD)d ~ D1 - §2) ("2~ ng™'7)
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Al1.2 EUROCODE DATA

Loaded areas UDL Conc. Yy V4 ')
(kN/m?)  load
(kN)
Category A (domestic and residential
activities) general 2.0 2.0 0.7 0.5 0.3
stairs 3.0 2.0 0.7 0.5 0.3
balconies 4.0 2.0 0.7 0.5 0.3
Category B (public buildings, general 3.0 2.0 0.7 0.5 0.3
offices, schools, hotels) stairs, balconies 4.0 2.0 0.7 0.5 0.3
Category C (assembly halls, theatres,  with fixed seats 4.0 4.0 0.7 0.7 0.6
restaurants, shopping areas) other 5.0 4.0 0.7 0.7 0.6
Category D (areas in warehouses, general 5.0 7.0 1.0 0.9 0.8
department stores)
Combination factors (NAD)
Variable actions Yy V0 v,
Imposed loads Dwellings 0.5 0.4 0.2
Offices and stores 0.7 0.6 0.3
Parking 0.7 0.7 0.6
Wind loads 0.7 0.2 0
Snow loads 0.7 0.2 0
Permanent (yg) Variable (yQ) Wind
Load
combination Favourable Unfavourable Favourable Unfavourable
effect effect effect effect
Permanent + 1.0 1.35 - 1.5 -
variable
Permanent + 1.0 1.35 - - 1.5
wind
Permanent + 1.0 1.35 - 1.35 1.35

variable + wind

Yo = partial safety factors for permanent actions G
Yo = partial safety factors for variable actions @
Yo = combination factors for rare load combinations
W; = combination factors for frequent load combinations

W, = combination factors for quasi-permanent load combinations

D G+ ) Va0

where i 2 1; Gg,; = characteristic values of permanent actions; Qg ; = characteristic values
of variable actions; W, ; = combination factor.
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A1.3 TYPICAL EXAMPLE OF A SINGLE STAIRCASE BASED ON EUROCODE 2

The stairs span longitudinally and are set into pockets in the two supporting beams provided.
The following data based on Eurocode 2 are provided:

Leffective =3m

Treads = 260 mm wide
deffective = 165 mm

fek =30 N/mm?
fr = 400 N/mm?
h =rise =15m

Risers = 150 mm

Gy = 5.268 kKN/m
Ecm = 32 kN/mm?
fyk = 460 N/mm?
Waist thickness Dy = 200 mm

Ok =3 kN/m

E; = 200 kN/mm?
Yfo =15

Pconc = 24 kN/m?

For rare and quasi-permanent combinations of loads we take
Yp=07, ¥;=03

My (0.45d upper limit) = 0.167 fox by d?
. L?
MsLs) mid span = (Gx + W Qk)?
My

k= —2
bwd?'fck

<0.156 = &'

Stair slope = v32 ++/1.52 =3.35 m

by, = width = 1 m of stairs for calculation purposes

Weight of waist and steps = (0.2 x 1.0 4+ 0.26 x 0.15 x 1/2) x 24 = 5.268 kN/m
Imposed load = 3.0 kN/m

Case A: Ultimate load = 1.35x5.268+1.5x 3.0 = 11.612 kN/m (no effective end restraint)

32
Case B: M(sLs) mid span = (5.268 + 0.7 x 3); = 8.280 kNm

Al1.3.1 Case A

11.612 x 32
Mylimate = ——?-)i‘” = 13.0635 kNm
13.0635 x 106

~ 1000 x 1652 x 30

(no compression steel is provided in the main span)

=0.016 < 0.156

z=0.95d = 0.95 x 165 = 156.75 mm

13.0635 x 108

As i) = G 260 % 190 ~ 112 M/

0.13
Minimum steel = T ¥ 1000 x 200 = 260 mm?/m governs

Provide T10-200 mm centre [A; = 393 mm?/m]
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M, = 0.167 foxbyd?
= 0.167 x 30 x 1000 x 1652 = 136.4 kN m > 11.612 kN'm applied OK.

Al.3.2 Case B
Msrsy = 8.289 kKN m

E, 200
= == =625
*=E TR
M 6 x 8.289 x 106
ar =6 _ 2% o x 2 = 1.243 N/mm?
bu D% 1000 x (200)
Steel % (P)
50 2
p=045="x —— n =021
O 1 —n
n
1-==093
3 6
MsLs) 8.289 x 10 2
= steel stress = = =137N
oy = steel stress Asd(l — ﬁ) 393 % 165 < 0.03 37 N/mm
3
< 0.8 fyx = 368 N/mm? OK.
0p = concrete stress
2M 2 x 8.289 x 10°
6L ___ _ x X =3.12 N/mm?

- bud?n(1 - %) 1000 x 1652 x 0.21 x 0.93

< 0.6fex = 0.6 x 30 = 18 N/mm? OK.

A1.3.3 Deflection

Eurocode 2 Table 4.14

L
== %—09 = 18.2 related to a steel stress of 250 N/mm?

250
Corresponding to 400 N/ mm? = fyx Table 4.14 is multiplied by > where o5 = steel
stress at that section. °

250 4 A i 4 172
— E % s (required) _ E % 12 _ 03806
s fyk  As(providegy 460 393

% = 0.3806 x 32 = 12.18

For simple span span/depth ratio allowed = 20
Both are less than this value, deflection criteria is satisfied.

A1.3.4 Cracking
Check the bar spacing needed to satisfy the cracking Case B for SLS

Dy =200 is at the border line i.c. 200 mm specified.

1004, 100 x 393
= =02 .
bd .~ 1000 x 165~ 28 < 03%

for HT steel.
Clear distance between bars must not exceed 3d = 3 x 165 = 495 mm or 750 mm.
At present the steel is T10-200 mm centre OK.
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Al.4 STAIR STRINGER CONTINUOUS OVER TWO SPANS EITHER SIDE ENV-19

A reinforced concrete stringer supports at each end of the waist slab of the stair. The cross-
section of this stringer is T-shaped as shown in Figure A1.4.1. The span of the stringer of
this heavy duty stair is 8 m. Intermediate support is provided for the 16 m stringer. The load
on each stringer is 97 kN/m. Using the following data, carryout

a) A linear analysis with redistribution (EC-2, 2.5, 3.4.2).

b) A non-linear analysis (EC-2, 2.5, 3.43).

Data
concrete C30/37; fex = 30 N/ mm?; fea =20 N/ mm?

Reinforcing steel S500 fyx = 500 N/mm? highly ductile
fym = fyk = 500 N/mm?;  fon = 30 + 8 = 38 N/mm?
v, = 1.00; y, = 1.0 (without tensioning effects)

a) Linear analysis

97 x 82
Mg=-222 = _776 kNm
Figure Al4.1. A 3= redistribut.ion factor = 0.85’
continuous stringer for a Reduced bending moment = M| 4B = 0.85(—=776) = —660 kN m
staircase, placed at both
ends.
a) b) Section A - A

F'A 97 kN/m (inclusive of partial factors)

|
A c 150 | |
| I A B | T L_
8 8

I " | » I

\J— . -As
NI

©) 300
m’\

’ 0.25 05 075

1.0

m; diagram

due to unit moment

d) -543

445 174

+ 504

my diagram

528
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Check on the cross section design as proposed at support B

660 x 109
=X T _0.19
Hsds = 300 x 7502 x 20
§=0u<au

dmin = 0.44 + 1.25 x 0.33 = 0.85 OK. as above

Vsda.ao = Vsa,c = design value of the applied shear

660

- vZ o 3062
Mmax (mid span) = Mgg1 = Msap = _sd _

= 482.
w207 82.66 kN m

b) Non-linear analysis

M;q, p over the support B 30% assumed

Check on the rotational capacity

Reduced B. M. at B = M{, p = 0.7(=776) = =543 kNm

543 x10°
Heds = 360 % 7502 x 20

3 = 0.263 (Table 7.1)

=0.161

Looking at Figure 4.15 of the code 8,4 = 0.014
Design value of the applied shear force

543
Vsd,a = Vsd,c =97 x4 — i 320 kN

Reinforcement required

3202
2 x 97
A (required) in spans (Table 7.1 of the code) = 17 cm? (1700 mm?/m)

4T10-150 [As provided) = 2096 mm?]
As (required) at B = 19 cm? (1900 mm?/m)
4T10-150 [Aj (provided) = 2096 mm?]

Maximum value M1 = Mgqr = = 528 kN m

Brequired (Using Simpson’s Rule) Flexibility Method

__ s 1
T 3T AMx) v

As = internal at the stringer taken to be 2 m
k = coefficient flexibility analysis
M(x) = virtual B
Moment = 1 at support B

1
——; = curvature at x due to applied load.

y(x
2(2
erequired = % . [000529] = 0.007

Orequired = 0.007 < 814 = 0.014 rotational capacity is not exhausted and is OK.
Hence the size and the reinforcemeat of the stringer is adequate.
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Figure A1.5.1. Fire
protection analysis
of a stringer.

Numerical integration

Points k m(x) M 1/y k(m(x))1/y/m
1 2 3 4 5 6
1 0 1 0 0 0 0
2 1 4 0.25 446 0.00283 0.00283
3 2 2 0.50 504 0.00320 0.00320
4 3 4 0.75 174 0.00111 0.00330
5 4 1 1.0 —543 —0.00407 —0.00407
Total 0.00519

Al.5 FIRE PROTECTION ANALYSIS OF LONGITUDINAL STRINGERS BASED

ON EUROCODE 3

A1.5.1 A typical example of steel sections in the stairs

Determine the thickness of the sprayed plaster protection required to give 90 min fire resis-

tance for a 406 x 178 x 74 UB, Grade S355JR. Use the following data:

Based on ENV 1993-1-2, Clause 4.2.2.2

Ap
22— 140/
7 m
Mp =532 kNm
Mc =380 kNm
Mg =237 kNm
m =0.89
p=20
rp =020
0, = 7850 kg/m?
pp = 800 kg/m?
My My
Load ratio R = M_j; < mvfc'
Mg 237 Sd, f kSq, f
L= =0445 al = _—4f _ o4
Mp 532 Ot = R e Ray
mMy;  0.89 x 237
= =0.555
Mc 380
D
A C

=0.70
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Figure Al1.6.1. A wooden
stringer.

R =0.555

1 172
04,cr = 78.381 —_ — 1] 482 = 624°
" [(0.967«%)3-833 ) ] ¥

Effective density p’p = p,(1+0.03p) = 800(1 + 0.03 x 20) = 1280 kg/m3

‘o 13
Iy = fid
4 [40((9”, _ 140)]

90 1.3
=|— | =92x107*
[40(624—140)] 9210

/ Ap\2 1280 9.2x10~%
b=y (%E)If( ”) - o.z(-) x (140)? = 0.588

Vi 7850
1+4W)72 -1 (14+4x0.588)1/2 -1
F, = 44 _ d+4x0588) = 0.7065
21 2 x 0.588
d, = thickness of the spray material for the stringers in the staircase

A
=NplfFy (7”> =0.2x9.2x 107 x 0.7065 x 140 = 0.0182 m
H

or 18 mm spray plaster.

Al.6 A TYPICAL EXAMPLE OF A WOODEN STAIRCASE STRINGER DESIGN

BASED ON EUROCODE 5

Figure A1.6.1 shows the stringer of a wooden staircase. Due to landings at A and B and
horizontal cross-members for the staircase the reactions at restraints A, B and C are shown.
There are axial vertical and horizontal thrusts at these restraints. The stringers are placed
parallel to one and other at 0.60 m spacings. The stringers are 38 x 125 sawn timber strength
clause C16. They are inclined at 35° which forms the slope of the staircase. Using the data
given and some to be taken from the code, check the stringer for both ultimate 1-1 and

serviceability limit states. Assume maximum bending occurs in AC.

Data

Gy = 0.425 kN/m on slope
Grmean = 8000 kN/mm?

Ok = 0.48 kN/m on plan

A-area = 4750 mm?

423m
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Wy, = section modulus = 98960 mm>
Iy, = second moment of area = 6185000 mm*
fe,ok = compressive stress = 17 N/ mm?
Eg.05 = Young’s modulus = 5400 kN/mm?2
kgef = 1.8 permanent load deflection
= 1.0 short term load deflection

B, = factor =02

yo =150

ve¢ =135

) = form factor = 1.2 (rectangular section)

Permanent load
Normal to stringer = G cos 35° = 0.348 kN/m

Parrallel to stringer = Gy sin35° = 0.244 kN/m

Short term load

Normal to stringer = Qj cos 35° = 0.322 kN/m
Parallel to stringer = Qf cos 35° sin30° = 0.226 kN/m
Permanent loads from building (p) structures

Nap = Npp =0.425kN i.c. %(2.442 x 0.348)

Ncp = 2Nap = 0.850 kN

Ppp = 0.425cot 35° = 0.607 kN

Pap =2 x 2.442 x 0.244 + 0.425cot 35° = 1.799 kN

-0.425
= —0.741 kN
sin 35°

Hep = —2 x 0.4255sin35° = —0.488 kN

Hap = 1.799 cos 35° — 0.4255in35° = 1.230 kN
> H=0 OK

Vep = 2 x 0.425 cos 35° = 0.696 kN

Vap = 1.7995in35° + 0.425 cos 35° = 1.38 kN
>V =2076kN

Z V =2x2442 x 0.425 =2.076 kN OK.

Hpp =

Short term loads (q)

Nag = Npg = %(2.442)(0.322) = 0.393 kN
Ncg = 2N4q = 0.786 kN

Ppy = 0.393 cot 35° = 0.561 kN

Pag =2 x 2.442 x 0.226 4 0.393 cot 35° = 1.665 kN
Hpy = % = —0.685 kN

Hcg =2 x 0.3935in35° = —0.451 kN

Hag = 1.665 cos 35° — 0.393 5in 35° = 1.138 kN

> H=0 OK

Veg = 2 x 0.393 cos 35° = 0.644 kN

Vag = 1.665sin35° + 0.393 cos 35° = 1.277 kN

ZV=1.920kN
> V=2x2x0480=1920kN OK.
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Ultimate limit state
Design load normal to stringer = ygGk + vpQk

= 1.35(0.348) + 1.5(0.322) = 0.953 kN/m
Design load parallel to stringer = 1.35(0.244) + 1.5(0.226)
= 0.668 kN
At B (near top landing) Pp = 1.35(0.607) + 1.5(0.561) = 1.661 kN

1
Shear force Vy; = (0.953)(5 X 2.4-42) = 1.164 kN

0.953(2.442)2
My4 (bending moment) = ——% =0.710 kN m

Axial load at mid point of the bottom part of the stringer
= 1.5(2.442)(0.668) + 1.661 = 4.108 kN

1.5V,
4 —0.37 N/m?

Ki1sKmodFv x _ 1.1 x09x1.8
Ym 1.3

= 1.37 N/mm?

14 = shear stress =

fv.a = shear strength =

. Myd 2
Om,y,d = bending stress = Wo =7.18 N/mm
y

knkiskmod Fi
Sm,y,a = bending strength = W
M
_1037x11x09x16
- 1.3

/1
iy = radius of gyration = Xy = 36.08 mm

= 12.64 N/mm?

2442
Ay = slend tio = —— = 67.7
y = slenderness ratio 36.08
4.1 1000
Oc,0,4 = axial stress = % = 0.87 N/mm?
2E,
O¢,crit,y = buckling stress = T )\3’05 = 11.63 N/mm?
y

Fe ok
A = |—— =1.209
ety O¢,crit,y

ky = 0.5(1 +Bo(hrer,y — 0.5) +20% ) = 1.32
— = 0560

1
ky+ 2 =2
y y rel,y

Combined bending and axial stress

key =

(¢ o
c,0,d + m,y,d < 1.0
kc,ch,o,d fm,y,d

M = 12.95 kKN/mm?

0.87 7.18
h =0. . .
enCe B e 12.95 T 1264 - 00 <10 OK

fc,o,d =

Serviceability limited state-deflection
Permanent service load normal to stringer = 0.348 kN/m
Short term service load normal to stringer = 0.322 kN/m
Flexural deflection due to uniform load

SF.aL*

= m combined for Uy Or up
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Shear deflection due to uniform load
_ OFualL?
"~ 8Gmeand
F,q for u; = 0.348
Fua for up =0.322

u1 = instantaneous permanent deflection = 3.40 mm

uy = instantaneous short term load deflection = 3.13 mm

u1fin = final permanent load deflection = (1 + kger)

= 6.12 mm

uzfn = final short term load deflection = us(1 + kgef)
=3.13 mm

Total deflection = 9.25 mm

Recommended deflections

2.442
U2 inst = % =30 = 8.14 mm against 3.13 mm
span  2.442

Unet,fin = 500 = 200 = 12.21 mm against 9.25 mm OK.

A1.7 COMPUTER PROGRAM SSTRING FOR BM ORDINATES

MASTER SSTRING

C THIS PROGRAM COMPUTES THE REACTIONS: BENDING MOMENT ORDINATES AT

C INTERVALS OF ONE-TENTH OF THE SPAN AND DEFLECTION AT THE CENTRE

C OF SIMPLY SUPPORTED BEAMS WITH TRIANGULAR LOADING

WRITE(2,1)

1 FORMAT(1H1/////15X,40HREACTIONS, BENDING MOMENT ORDINATES AND ,
150HDEFLECTION AT THE CENTRE OF SIMPLY SUPPORTED BEAMS//
248X,23HWITH TRIANGULAR LOADING///////)

9 READ(1,2) N

2 FORMAT(13)
IF(N.EQ.0)GO TO 10
READ(1,3)S,W,A

3 FORMAT (3F0.0)

C CALCULATE REACTIONS, RA AND RB
RB=Wx(S+4)/6
RA=W+S/2-RB
WRITE(2,4)N,S,W,A,RA,RB
4 FORMAT(5X, 12HINPUT DATA :///20X,17HBEAM REFERENCE NO,22X,3H = ,
116//20X,4HSPAN,35X,3H = ,F6.3,2H M//20X,21HMAXIMUM LOAD ORDINATE,
218X,3H = ,F6.3,5H KN/M//20X,32HDISTANCE OF APEX FROM LEFT HAND ,
33HEND,4X,3H = ,F6.3,2H M/////5X, 9HRESULTS :///20X,
429HREACTION AT LEFT HAND END, RA,10X,3H = ,F7.3,3H KN//20X,
530HREACTION AT RIGHT HAND END, RB,9X,3H = ,F7.3,3H KN///
610X,18HDIST FROM L.H. END 10X,23HBENDING MOMENT ORDINATE/
715X, 8H(METRES) , 24X, 4HKN.M/)
C CALCULATE BENDING MOMENT ORDINATES
D0 5 I=0,10
X=1%3/10
IF(A-0.0)5,12,13
12 BMX=RB*(S-X)-W* (S-X)**3/(6%S)
GO TO S
13 IF(X-A)6,6,7
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6 BMX=X* (RA-WxX*X/(6%A))
.G0 TO &
7 BMX=(S-X)*(RB-W*(S~X)**2/(6%(S-4)))
5 WRITE(2,8)X,BMX
8 FORMAT(F22.3,F30.3)
C CALCULATE DEFLECTION AT THE CENTRE
GO TO 9
10 WRITE(2,11)
11 FORMAT(//////51X,20H** END OF RUN *x)
STOP
END

END OF SEGMENT, LENGTH 195, NAME SSTRING

FINISH
END OF COMPILATION - NO ERRORS
S/C SUBFILE: 10 BUCKETS USED

CONSOLIDATED BY XPCK 12B DATE 18/05/73 TIME 10/55/19

PROGRAM HOPE

EXTENDED DATA (22AM)
COMPACT PROGRAM (DBM)
CORE 4736

SEG SSTRING
ENT FTRAP
ENT FRESET

REACTIONS, BENDING MOMENT ORDINATES AND DEFLECTION AT THE CENTRE OF SIMPLY
SUPPORTED BEAMS WITH TRIANGULAR LOADING

INPUT DATA :
BEAM REFERENCE NO = 1
SPAN = 3.000 M
MAXIMUM LOAD ORDINATE = 2.000 KN/M
DISTANCE OF APEX FROM LEFT HAND END = 1.500 M
RESULTS :
REACTION AT LEFT HAND END, RA = 1.500 KN
REACTION AT RIGHT HAND END, RB = 1.500 KN
DIST FROM L.H. END BENDING MOMENT ORDINATE

(METRES) KN.M

0.000 0.000

0.300 0.444

0.600 0.852

0.900 1.188

1.200 1.416

1.500 1.500

1.800 1.416

2.100 1.188

2.400 0.852

2.700 0.444

3.000 0.000
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INPUT DATA :
BEAM REFERENCE NO = 2
SPAN = %300.000 M
MAXIMUM LOAD ORDINATE = 20.000 KN/M
DISTANCE OF APEX FROM LEFT HAND END = 0.000 M
RESULTS :
REACTION AT LEFT HAND END, RA = %2000.000 KN
REACTION AT RIGHT HAND END, RB = *1000.000 KN
DIST FROM L.H. END BENDING MOMENT ORDINATE
(METRES) KN.M
0.000 0.000

30.000 51300.000

60.000 86400.000

90.000 107100.000

120.000 115200.000

150.000 112500.000

180.000 100800. 000

210.000 81900.000

240.000 57600.000

270.000 29700.000

300.000 0.000

** END OF RUN *x
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APPENDIX 2

Structural details for practising
engineers

A2.1 DRAWINGS AND STRUCTURAL DETAILS FOR CONCRETE STAIRS

2.1.1 Staircase: Free-standing — Reinforcement details (British practice)

2.1.2 Staircase: Free-standing supported by brickwork or on beams — Reinforcement details
(British practice)

2.1.3 Pre cast concrete staircase (Birchwood Products) (British practice)

2.1.4 Pre cast concrete stairs (British practice)

2.1.5 Plans and elevations of R.C. stairs: STEPS (Turkish/European practice)

2.1.6 Typical reinforcement details of stairs and landings in a building: STEPS
(Turkish/European practice)

2.1.7 Typical reinforcement details of stairs and landings in a building: WAIST
(Turkish/European practice)

2.1.8 Ellipto-helical staircase (Hyder Group UK) (British practice)

2.1.9 Structural details of ellipto-helical staircase (Hyder Group UK) (British practice)
2.1.10 Helical staircase — Elevation and plans (Turkish/European practice)

2.1.11 Helical staircase — Structural details (Turkish/European practice)

2.1.12 Helical staircase — Circular in plan — Reinforcement details (European practice) (Von
K. Winter 1977) (Ernst & Sohn)

2.1.13 Helical-cum horseshoe staircase — Reinforcement details (see example) (German prac-
tice) Erlauterungen zu DIN 1080, Von K. Winter 1977, Ernst & Sohn (Compliments from
Von K. Winter)

2.1.14-2.1.16 Mixed staircase — Straight-cum circular/helical (Ward & Cole, London) (British
practice)

A2.2 DRAWINGS AND STRUCTURAL DETAILS FOR STEEL STAIRCASES

2.2.1 Sectional elevation of a steel stairs (Gibbs & Hill, New York) (American practice)
2.2.2 Structural details of stair (Gibbs & Hill, New York) (American practice)

2.2.3 Arch details of stair (Gibbs & Hill, New York) (American practice)

2.2.4 Steel helical staircase — Elevations, plans and structural details (Turkish/European
practice)

2.2.5 Sectional elevation, plan and details for free-standing steel stairs (Turkish/European
practice)

2.2.6 Typical stringer, step and connection details for steel staircases

2.2.7 Connection details for steel stringers to concrete landings and handrails for steel
staircases

A2.3 STRUCTURAL DETAILS IN TIMBER

2.3.1 Typical wooden staircases and their details
2.3.2 Handrails and posts
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Figure A2.1.1. Staircase: Free-standing — Reinforcement details (British practice).
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Figure A2.1.6 (cont.).
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Figure A2.1.7. Typical reinforcement details of stairs and landings in a building: WAIST (Turkish/European practice).
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FOR HANORAIL DETAIL SEE DRAWING B820.97. 20-4001

K332 %L--——GBHBH’-

———— K334 60900 ——

STAIRS BETWEEN LEVEL +3478& +692

Figure A2.1.7 (cont.).
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Figure A2.1.7 (cont.).
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First floor plan Note: minimum lap to

reinforcement = 600 mm

.|

2x9T1202-100-9B,9T
at and bend on site

Figure A2.1.8.
Ellipto-helical staircase
(Hyder Group UK) (British

practice). Ground floor plan
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Figure A2.1.9. Structural gudd
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2812

Note: 5310 is 5T10 British practice/American practice
&8/15 is T8-150 mmc/c
b=1,50isb=1.5 metc.

Figure A2.1.12. Helical staircase — Circular in plan — Reinforcement details (European practice) (Von K. Winter 1977)
(Ernst & Sohn).
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Figure A2.1.13. Helical-cum horseshoe staircase — Reinforcement details (see example) (German practice) Erlauterungen
zu DIN 1080, Von K. Winter 1977, Emst & Sohn (Compliments from Von K. Winter).



302  Structural details for practising engineers

@ Face of column— Foe of beam over — e
I | provide 3no. 300 dia. x50 max—
| Tt il precise
| gcalons 1o B conimes by
l rchifect.
- : —— . <] - )
1] A W R {700 equal isers ot 19
[ l 5 \\\\ 3 < ! I 16 no. equal finished gings
o | l A~ - N |
S LA \ || @
001 5— -.J,— — I = - — i S— k
a ] w18 | 1 % g
§ ' I ",_ ] I 150) 1550 4 125 I g
L : |
. ’ N |
4+ — o 24 &8
. Fr———————— -~ n
gng.e =uul ings | |L_____,2____ [ i l §%
[~}
‘ 00 l 350 ’ 150 ! —
, {_ 1900 up | - { ' 2
A
@__ ‘ ’ . - ]
l | ] !
| | |
|
( drawing no. rev. drawing title WARD + COLE
Strudurd Works +
30/127/355 1 ] CWLMI 2 consuiting snglnesrs
*9% and 120 date General Arrangement of Stiircase

AL 199%

me B TILeKIT]

16 001-744.0000  Tax. OB1-744-0002
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Figure A2.1.14 (cont.).
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Figure A2.1.16. Mixed staircase — Straight-cum circular/helical (Ward & Cole, London) (British practice).
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Figure A2.3.2. Handrails
and posts.

(A) Shapes of posts
Direction of grip
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In recent years both free-standing and geometric staircases have become
quite popular. Many variations exist, such as spiral, helical, and elliptical
staircases, and combinations of these. A number of researchers have come
forward with different concepts in the fields of analytical and numerical
design and of experimental methods and assessments. The aim of this
book is to cover all these methods and to present them with greater
simplicity to practising engineers.

Staircases is divided into five chapters: Specifications and basic data on
staircases; Structural analysis of staircases — Classical methods; Structural
analysis of staircases — Modern methods; Staircases and their analyses
- A comparative study; Design analysis and structural detailing. Charts
and graphs are included and numerous design examples are given of free-
standing and other geometric staircases and of their elements and
components. These examples are related to the case studies which were
based on staircases that have already been constructed. All examples are
checked using various Eurocodes,

The book includes bibliographical references and is supported by two
appendices, which will be of particular interest to those practising engineers
who wish to make a comparative study of the different practices and code
requirements used by various countries; detailed drawings are included
from the USA, Britain, Europe and Asia. Staircases will serve as a useful
text for teachers preparing design syllabi for undergraduate and post
graduate courses. Each major section contains a full explanation which
allows the book to be used by students and practising engineers, particularly
those facing the formidable task of having to design/detail complicated
staircases with unusual boundary conditions. Contractors will also find
this book useful in the preparation of construction drawings and
manufacturers will be interested in the guidance given in the text.
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